Structure and properties of polydisperse polyelectrolyte brushes studied by self-consistent field theory

被引:19
|
作者
Okrugin, Boris M. [1 ,2 ]
Richter, Ralf P. [1 ,3 ,4 ]
Leermakers, Frans A. M. [5 ]
Neelov, Igor M. [7 ]
Borisov, Oleg, V [6 ,7 ,8 ]
Zhulina, Ekaterina B. [6 ,7 ]
机构
[1] CIC biomaGUNE, Biosurface Lab, Paseo Miramon 182, San Sebastian 20014, Spain
[2] St Petersburg State Univ, Dept Phys, St Petersburg 198904, Russia
[3] Univ Leeds, Fac Biol Sci, Fac Math & Phys Sci, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Leeds, Astbury Ctr Struct Mol Biol, Leeds LS2 9JT, W Yorkshire, England
[5] Wageningen Univ, Phys Chem & Soft Matter, NL-6703 NB Wageningen, Netherlands
[6] Russian Acad Sci, Inst Macromol Cpds, St Petersburg 199004, Russia
[7] St Petersburg Natl Univ Informat Technol Mech & O, St Petersburg 197101, Russia
[8] UMR 5254 CNRS UPPA, Inst Sci Analyt & Phys Chim Environm Mat, Pau, France
基金
俄罗斯基础研究基金会; 欧洲研究理事会;
关键词
POLYMER BRUSH; GRAFTED POLYELECTROLYTES; PROJECTION DOMAINS; NF-M; NEUROFILAMENTS; CHAINS; LAYER; COPOLYMERS; NETWORKS; BEHAVIOR;
D O I
10.1039/c8sm01138a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two complementary self-consistent field theoretical approaches are used to analyze the equilibrium structure of binary and ternary brushes of polyions with different degrees of polymerization. Stratification in binary brushes is predicted: the shorter chains are entirely embedded in the proximal sublayer depleted of end-points of longer chains while the peripheral sublayer contains exclusively terminal segments of longer chains. The boundary between sublayers is enriched with counterions that neutralize the residual charge of the proximal sublayer. These analytical predictions for binary brushes are confirmed and extended to ternary brushes using the numerical Scheutjens-Fleer approach.
引用
收藏
页码:6230 / 6242
页数:13
相关论文
共 50 条
  • [31] Structure of bimodal and polydisperse polymer brushes in a good solvent studied by numerical mean field theory
    Kritikos, G
    Terzis, AF
    POLYMER, 2005, 46 (19) : 8355 - 8365
  • [32] Response of Bi-disperse Polyelectrolyte Brushes to External Electric Fields——A Numerical Self-consistent Field Theory Study附视频
    Cong Kang
    Shuangliang Zhao
    童朝晖
    Chinese Journal of Polymer Science, 2017, (01) : 98 - 107
  • [33] PERTURBATION THEORY OF SELF-CONSISTENT FIELD
    RAJAGOPA.AK
    NUOVO CIMENTO, 1967, 5 (03): : 794 - +
  • [34] Lattice self-consistent field calculations of ring polymer brushes
    Qiu, Wenjuan
    Li, Baohui
    Wang, Qiang
    SOFT MATTER, 2018, 14 (10) : 1887 - 1896
  • [36] The model of a polyelectrolyte solution with explicit account of counterions within a self-consistent field theory
    Budkov, Yu. A.
    Nogovitsyn, E. A.
    Kiselev, M. G.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 87 (04) : 638 - 644
  • [37] Self-consistent field theory of protein adsorption in a non-Gaussian polyelectrolyte brush
    Biesheuvel, PM
    Leermakers, FAM
    Stuart, MAC
    PHYSICAL REVIEW E, 2006, 73 (01):
  • [38] Self-consistent field theory of polyelectrolyte systems (vol 108, pg 6733, 2004)
    Wang, Q
    Taniguchi, T
    Fredrickson, GH
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (19): : 9855 - 9856
  • [39] The model of a polyelectrolyte solution with explicit account of counterions within a self-consistent field theory
    Yu. A. Budkov
    E. A. Nogovitsyn
    M. G. Kiselev
    Russian Journal of Physical Chemistry A, 2013, 87 : 638 - 644
  • [40] Binary mixed homopolymer brushes grafted on nanorod particles: A self-consistent field theory study
    Ma, Xin
    Yang, Yingzi
    Zhu, Lei
    Zhao, Bin
    Tang, Ping
    Qiu, Feng
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (21):