On a New Family of Runge-Kutta-Nystrom Pairs of Orders 6(4)

被引:9
|
作者
Kovalnogov, Vladislav N. [1 ]
Fedorov, Ruslan, V [1 ]
Generalov, Dmitry A. [1 ]
Tsvetova, Ekaterina, V [1 ]
Simos, Theodore E. [1 ,2 ,3 ,4 ,5 ]
Tsitouras, Charalampos [6 ]
机构
[1] Ulyanovsk State Tech Univ, Lab Interdisciplinary Problems Energy Prod, 32 Severny Venetz St, Ulyanovsk 432027, Russia
[2] Univ Western Macedonia, Dept Math, GR-52100 Kastoria, Greece
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
[5] Democritus Univ Thrace, Deptartment Civil Engn, Sect Math, GR-67100 Xanthi, Greece
[6] Natl & Kapodistrian Univ Athens, Gen Deptartment, Euripus Campus, GR-34400 Psachna, Greece
关键词
initial value problem; Runge-Kutta-Nystrom pairs; stability intervals; periodic solutions; 2-STEP METHODS; 9TH ORDER;
D O I
10.3390/math10060875
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, Runge-Kutta-Nystrom pairs of orders 6(4) using six stages per step are considered. The main contribution of the present work is that we introduce a new family of pairs (i.e., new methodology of solution for order conditions) that possesses seven free parameters instead of four, as used by similar pairs until now. Using these extra coefficients efficiently we may construct methods with better properties. Here, we exploit the free parameters in order to derive a pair with extended imaginary stability interval. This type of method may furnish better results on problems with periodic solutions. Extended numerical tests justify our effort.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] New family for Runge-Kutta-Nystrom pairs of orders 6(4) with coefficients trained to address oscillatory problems
    Kovalnogov, Vladislav N.
    Kornilova, M., I
    Khakhalev, Y. A.
    Generalov, D. A.
    Simos, T. E.
    Tsitouras, Ch
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7715 - 7727
  • [2] Evolutionary construction of Runge-Kutta-Nystrom pairs of orders 5(4)
    Famelis, I. Th.
    Tsitmidelis, S.
    Tsitouras, Ch.
    1ST MINI CONFERENCE ON EMERGING ENGINEERING APPLICATIONS (MCEEA'15), 2016, 41
  • [3] Trigonometric fitted Runge-Kutta-Nystrom pair of orders 6(4)
    Tsitouras, Ch
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2509 - 2511
  • [4] Runge-Kutta-Nystrom Pairs of Orders 8(6) for Use in Quadruple Precision Computations
    Kovalnogov, Vladislav N.
    Matveev, Alexander F.
    Generalov, Dmitry A.
    Karpukhina, Tamara V.
    Simos, Theodore E.
    Tsitouras, Charalampos
    MATHEMATICS, 2023, 11 (04)
  • [5] AN ALGORITHMIC APPROACH TO RUNGE-KUTTA-NYSTROM PAIRS
    Kovalnogov, V. N.
    Fedorov, R. V.
    Karpukhina, T. V.
    Evgenievich, C. Y.
    Simos, T. E.
    Tsitouras, CH.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 14 (01): : 3 - 22
  • [6] On high order Runge-Kutta-Nystrom pairs
    Simos, T. E.
    Tsitouras, Ch
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 400
  • [7] On fitted modifications of Runge-Kutta-Nystrom pairs
    Tsitouras, Ch.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 416 - 423
  • [8] A BETTER APPROACH FOR THE DERIVATION OF THE EMBEDDED RUNGE-KUTTA-NYSTROM PAIR OF ORDERS 6 AND 4
    ELMIKKAWY, MEA
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1991, 40 (3-4) : 245 - 249
  • [9] Runge-Kutta-Nystrom Pairs of Orders 8(6) with Coefficients Trained to Perform Best on Classical Orbits
    Jerbi, Houssem
    Omri, Mohamed
    Kchaou, Mourad
    Simos, Theodore E.
    Tsitouras, Charalampos
    MATHEMATICS, 2022, 10 (04)
  • [10] RUNGE-KUTTA-NYSTROM TRIPLES
    DORMAND, JR
    PRINCE, PJ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1987, 13 (12) : 937 - 949