COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images

被引:73
|
作者
Akter, Shamima [1 ]
Shamrat, F. M. Javed Mehedi [2 ]
Chakraborty, Sovon [3 ]
Karim, Asif [4 ]
Azam, Sami [4 ]
机构
[1] George Mason Univ, Dept Bioinformat & Computat Biol, Fairfax, VA 22030 USA
[2] Daffodil Int Univ, Dept Software Engn, Dhaka 1207, Bangladesh
[3] Ahsanullah Univ Sci & Technol, Dept Comp Sci & Engn, Dhaka 1208, Bangladesh
[4] Charles Darwin Univ, Coll Engn IT & Environm, Casuarina, NT 0909, Australia
来源
BIOLOGY-BASEL | 2021年 / 10卷 / 11期
关键词
COVID-19; chest X-ray image; CNN; Mobilenetv2; modified MobileNetV2; performance evaluation; NEURAL-NETWORK; CLINICAL CHARACTERISTICS; CORONAVIRUS; PNEUMONIA; CT;
D O I
10.3390/biology10111174
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Simple SummaryThe study proposes an automated deep learning-based classification model, based on a Convolutional Neural Network, that demonstrates a rapid detection rate for COVID-19. The training dataset consists of 3616 COVID-19 chest X-ray images and 10,192 healthy chest X-ray images which were then augmented. Initially using the dataset, the symptoms of COVID-19 were detected by employing eleven existing CNN models. MobileNetV2 showed enough promise to make it a candidate for further modification. The resulting model produced the highest accuracy of 98% in classifying COVID-19 and healthy chest X-rays among all the implemented CNN models. The results suggest that the proposed method can efficiently identify the symptoms of infection from chest X-ray images better than existing methods.COVID-19, regarded as the deadliest virus of the 21st century, has claimed the lives of millions of people around the globe in less than two years. Since the virus initially affects the lungs of patients, X-ray imaging of the chest is helpful for effective diagnosis. Any method for automatic, reliable, and accurate screening of COVID-19 infection would be beneficial for rapid detection and reducing medical or healthcare professional exposure to the virus. In the past, Convolutional Neural Networks (CNNs) proved to be quite successful in the classification of medical images. In this study, an automatic deep learning classification method for detecting COVID-19 from chest X-ray images is suggested using a CNN. A dataset consisting of 3616 COVID-19 chest X-ray images and 10,192 healthy chest X-ray images was used. The original data were then augmented to increase the data sample to 26,000 COVID-19 and 26,000 healthy X-ray images. The dataset was enhanced using histogram equalization, spectrum, grays, cyan and normalized with NCLAHE before being applied to CNN models. Initially using the dataset, the symptoms of COVID-19 were detected by employing eleven existing CNN models; VGG16, VGG19, MobileNetV2, InceptionV3, NFNet, ResNet50, ResNet101, DenseNet, EfficientNetB7, AlexNet, and GoogLeNet. From the models, MobileNetV2 was selected for further modification to obtain a higher accuracy of COVID-19 detection. Performance evaluation of the models was demonstrated using a confusion matrix. It was observed that the modified MobileNetV2 model proposed in the study gave the highest accuracy of 98% in classifying COVID-19 and healthy chest X-rays among all the implemented CNN models. The second-best performance was achieved from the pre-trained MobileNetV2 with an accuracy of 97%, followed by VGG19 and ResNet101 with 95% accuracy for both the models. The study compares the compilation time of the models. The proposed model required the least compilation time with 2 h, 50 min and 21 s. Finally, the Wilcoxon signed-rank test was performed to test the statistical significance. The results suggest that the proposed method can efficiently identify the symptoms of infection from chest X-ray images better than existing methods.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Detection of COVID-19 using deep learning on x-ray lung images
    Odeh, Abd AlRahman
    Alomar, Ayah
    Aljawarneh, Shadi
    PeerJ Computer Science, 2022, 8
  • [32] Covid-19 detection on x-ray images using a deep learning architecture
    Akgul, Ismail
    Kaya, Volkan
    Unver, Edhem
    Karavas, Erdal
    Baran, Ahmet
    Tuncer, Servet
    JOURNAL OF ENGINEERING RESEARCH, 2023, 11 (2B): : 15 - 26
  • [33] Detection of COVID-19 using deep learning on x-ray lung images
    Odeh, AbdAlRahman
    Alomar, Ayah
    Aljawarneh, Shadi
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [34] COVID-19 detection from chest X-ray images using transfer learning
    El Houby, Enas M. F.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Detection of COVID-19 from chest x-ray images using transfer learning
    Manokaran, Jenita
    Zabihollahy, Fatemeh
    Hamilton-Wright, Andrew
    Ukwatta, Eranga
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (S1)
  • [36] Deep Learning-based Detection of COVID-19 from Chest X-ray Images
    Manokaran, Jenita
    Zabihollahy, Fatemeh
    Hamilton-Wright, Andrew
    Ukwatta, Eranga
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [37] New Optimized Deep Learning Application for COVID-19 Detection in Chest X-ray Images
    Karim, Ahmad Mozaffer
    Kaya, Hilal
    Alcan, Veysel
    Sen, Baha
    Hadimlioglu, Ismail Alihan
    SYMMETRY-BASEL, 2022, 14 (05):
  • [38] COVID-19 Detection from Chest X-ray Images Based on Deep Learning Techniques
    Mathesul, Shubham
    Swain, Debabrata
    Satapathy, Santosh Kumar
    Rambhad, Ayush
    Acharya, Biswaranjan
    Gerogiannis, Vassilis C.
    Kanavos, Andreas
    ALGORITHMS, 2023, 16 (10)
  • [39] Detection of COVID-19 coronavirus infection in chest X-ray images with deep learning methods
    Shchetinin, E. Yu
    COMPUTER OPTICS, 2022, 46 (06) : 963 - +
  • [40] The Practicality of Deep Learning Algorithms in COVID-19 Detection: Application to Chest X-ray Images
    Alorf, Abdulaziz
    ALGORITHMS, 2021, 14 (06)