The Practicality of Deep Learning Algorithms in COVID-19 Detection: Application to Chest X-ray Images

被引:0
|
作者
Alorf, Abdulaziz [1 ]
机构
[1] Qassim Univ, Dept Elect Engn, Coll Engn, Buraydah 51452, Saudi Arabia
关键词
COVID-19; SARS-CoV-2; radiography; CT scans; X-ray; deep learning; NEURAL-NETWORK;
D O I
10.3390/a14060183
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since January 2020, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected the whole world, producing a respiratory disease that can become severe and even cause death in certain groups of people. The main method for diagnosing coronavirus disease 2019 (COVID-19) is performing viral tests. However, the kits for carrying out these tests are scarce in certain regions of the world. Lung conditions as perceived in computed tomography and radiography images exhibit a high correlation with the presence of COVID-19 infections. This work attempted to assess the feasibility of using convolutional neural networks for the analysis of pulmonary radiography images to distinguish COVID-19 infections from non-infected cases and other types of viral or bacterial pulmonary conditions. The results obtained indicate that these networks can successfully distinguish the pulmonary radiographies of COVID-19-infected patients from radiographies that exhibit other or no pathology, with a sensitivity of 100% and specificity of 97.6%. This could help future efforts to automate the process of identifying lung radiography images of suspicious cases, thereby supporting medical personnel when many patients need to be rapidly checked. The automated analysis of pulmonary radiography is not intended to be a substitute for formal viral tests or formal diagnosis by a properly trained physician but rather to assist with identification when the need arises.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Deep Learning Algorithms for Automatic COVID-19 Detection on Chest X-Ray Images
    Cannata, Sergio
    Paviglianiti, Annunziata
    Pasero, Eros
    Cirrincione, Giansalvo
    Cirrincione, Maurizio
    [J]. IEEE ACCESS, 2022, 10 : 119905 - 119913
  • [2] Covid-19 Detection in Chest X-ray Images with Deep Learning
    Ozdemir, Zeynep
    Yalim Keles, Hacer
    [J]. 29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [3] New Optimized Deep Learning Application for COVID-19 Detection in Chest X-ray Images
    Karim, Ahmad Mozaffer
    Kaya, Hilal
    Alcan, Veysel
    Sen, Baha
    Hadimlioglu, Ismail Alihan
    [J]. SYMMETRY-BASEL, 2022, 14 (05):
  • [4] Deep learning based detection and analysis of COVID-19 on chest X-ray images
    Jain, Rachna
    Gupta, Meenu
    Taneja, Soham
    Hemanth, D. Jude
    [J]. APPLIED INTELLIGENCE, 2021, 51 (03) : 1690 - 1700
  • [5] Deep learning based detection and analysis of COVID-19 on chest X-ray images
    Rachna Jain
    Meenu Gupta
    Soham Taneja
    D. Jude Hemanth
    [J]. Applied Intelligence, 2021, 51 : 1690 - 1700
  • [6] A deep ensemble learning framework for COVID-19 detection in chest X-ray images
    Asif, Sohaib
    Qurrat-ul-Ain
    Awais, Muhammad
    Amjad, Kamran
    Bilal, Omair
    Al-Sabri, Raeed
    Abdullah, Monir
    [J]. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2024, 13 (01):
  • [7] COVID-19 Detection in Chest X-ray Images using a Deep Learning Approach
    Saiz, Fatima A.
    Barandiaran, Inigo
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2020, 6 (02): : 11 - 14
  • [8] Deep learning based detection of COVID-19 from chest X-ray images
    Sarra Guefrechi
    Marwa Ben Jabra
    Adel Ammar
    Anis Koubaa
    Habib Hamam
    [J]. Multimedia Tools and Applications, 2021, 80 : 31803 - 31820
  • [9] Deep learning approaches for COVID-19 detection based on chest X-ray images
    Ismael, Aras M.
    Sengur, Abdulkadir
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 164
  • [10] Deep learning based detection of COVID-19 from chest X-ray images
    Guefrechi, Sarra
    Ben Jabra, Marwa
    Ammar, Adel
    Koubaa, Anis
    Hamam, Habib
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 31803 - 31820