Deep learning based detection and analysis of COVID-19 on chest X-ray images

被引:0
|
作者
Rachna Jain
Meenu Gupta
Soham Taneja
D. Jude Hemanth
机构
[1] Bharati Vidyapeeth’s College of Engineering,Department of CSE
[2] Chandigarh University,Department of CSE
[3] Karunya Institute of Technology and Sciences,Department of ECE
来源
Applied Intelligence | 2021年 / 51卷
关键词
Covid-19; XCeption; Inception net 3; Deep-learning; ResNeXt; Chest X-ray images; CNN;
D O I
暂无
中图分类号
学科分类号
摘要
Covid-19 is a rapidly spreading viral disease that infects not only humans, but animals are also infected because of this disease. The daily life of human beings, their health, and the economy of a country are affected due to this deadly viral disease. Covid-19 is a common spreading disease, and till now, not a single country can prepare a vaccine for COVID-19. A clinical study of COVID-19 infected patients has shown that these types of patients are mostly infected from a lung infection after coming in contact with this disease. Chest x-ray (i.e., radiography) and chest CT are a more effective imaging technique for diagnosing lunge related problems. Still, a substantial chest x-ray is a lower cost process in comparison to chest CT. Deep learning is the most successful technique of machine learning, which provides useful analysis to study a large amount of chest x-ray images that can critically impact on screening of Covid-19. In this work, we have taken the PA view of chest x-ray scans for covid-19 affected patients as well as healthy patients. After cleaning up the images and applying data augmentation, we have used deep learning-based CNN models and compared their performance. We have compared Inception V3, Xception, and ResNeXt models and examined their accuracy. To analyze the model performance, 6432 chest x-ray scans samples have been collected from the Kaggle repository, out of which 5467 were used for training and 965 for validation. In result analysis, the Xception model gives the highest accuracy (i.e., 97.97%) for detecting Chest X-rays images as compared to other models. This work only focuses on possible methods of classifying covid-19 infected patients and does not claim any medical accuracy.
引用
收藏
页码:1690 / 1700
页数:10
相关论文
共 50 条
  • [1] Deep learning based detection and analysis of COVID-19 on chest X-ray images
    Jain, Rachna
    Gupta, Meenu
    Taneja, Soham
    Hemanth, D. Jude
    [J]. APPLIED INTELLIGENCE, 2021, 51 (03) : 1690 - 1700
  • [2] Covid-19 Detection in Chest X-ray Images with Deep Learning
    Ozdemir, Zeynep
    Yalim Keles, Hacer
    [J]. 29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [3] Deep learning based detection of COVID-19 from chest X-ray images
    Guefrechi, Sarra
    Ben Jabra, Marwa
    Ammar, Adel
    Koubaa, Anis
    Hamam, Habib
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 31803 - 31820
  • [4] Deep learning approaches for COVID-19 detection based on chest X-ray images
    Ismael, Aras M.
    Sengur, Abdulkadir
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 164
  • [5] Deep learning based detection of COVID-19 from chest X-ray images
    Sarra Guefrechi
    Marwa Ben Jabra
    Adel Ammar
    Anis Koubaa
    Habib Hamam
    [J]. Multimedia Tools and Applications, 2021, 80 : 31803 - 31820
  • [6] COVID-19 Detection Using Chest X-Ray Images Based on Deep Learning
    Sani, Sudeshna
    Bera, Abhijit
    Mitra, Dipra
    Das, Kalyani Maity
    [J]. INTERNATIONAL JOURNAL OF SOFTWARE SCIENCE AND COMPUTATIONAL INTELLIGENCE-IJSSCI, 2022, 14 (01):
  • [7] Machine Learning and Deep Learning-Based Detection and Analysis of COVID-19 in Chest X-Ray Images
    Kumar, Kunal
    Shokeen, Harsh
    Gambhir, Shalini
    Kumar, Ashwani
    Saraswat, Amar
    [J]. INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 151 - 160
  • [8] Deep Learning-based Detection of COVID-19 from Chest X-ray Images
    Manokaran, Jenita
    Zabihollahy, Fatemeh
    Hamilton-Wright, Andrew
    Ukwatta, Eranga
    [J]. MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [9] COVID-19 Detection from Chest X-ray Images Based on Deep Learning Techniques
    Mathesul, Shubham
    Swain, Debabrata
    Satapathy, Santosh Kumar
    Rambhad, Ayush
    Acharya, Biswaranjan
    Gerogiannis, Vassilis C.
    Kanavos, Andreas
    [J]. ALGORITHMS, 2023, 16 (10)
  • [10] A deep ensemble learning framework for COVID-19 detection in chest X-ray images
    Asif, Sohaib
    Qurrat-ul-Ain
    Awais, Muhammad
    Amjad, Kamran
    Bilal, Omair
    Al-Sabri, Raeed
    Abdullah, Monir
    [J]. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2024, 13 (01):