COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images

被引:73
|
作者
Akter, Shamima [1 ]
Shamrat, F. M. Javed Mehedi [2 ]
Chakraborty, Sovon [3 ]
Karim, Asif [4 ]
Azam, Sami [4 ]
机构
[1] George Mason Univ, Dept Bioinformat & Computat Biol, Fairfax, VA 22030 USA
[2] Daffodil Int Univ, Dept Software Engn, Dhaka 1207, Bangladesh
[3] Ahsanullah Univ Sci & Technol, Dept Comp Sci & Engn, Dhaka 1208, Bangladesh
[4] Charles Darwin Univ, Coll Engn IT & Environm, Casuarina, NT 0909, Australia
来源
BIOLOGY-BASEL | 2021年 / 10卷 / 11期
关键词
COVID-19; chest X-ray image; CNN; Mobilenetv2; modified MobileNetV2; performance evaluation; NEURAL-NETWORK; CLINICAL CHARACTERISTICS; CORONAVIRUS; PNEUMONIA; CT;
D O I
10.3390/biology10111174
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Simple SummaryThe study proposes an automated deep learning-based classification model, based on a Convolutional Neural Network, that demonstrates a rapid detection rate for COVID-19. The training dataset consists of 3616 COVID-19 chest X-ray images and 10,192 healthy chest X-ray images which were then augmented. Initially using the dataset, the symptoms of COVID-19 were detected by employing eleven existing CNN models. MobileNetV2 showed enough promise to make it a candidate for further modification. The resulting model produced the highest accuracy of 98% in classifying COVID-19 and healthy chest X-rays among all the implemented CNN models. The results suggest that the proposed method can efficiently identify the symptoms of infection from chest X-ray images better than existing methods.COVID-19, regarded as the deadliest virus of the 21st century, has claimed the lives of millions of people around the globe in less than two years. Since the virus initially affects the lungs of patients, X-ray imaging of the chest is helpful for effective diagnosis. Any method for automatic, reliable, and accurate screening of COVID-19 infection would be beneficial for rapid detection and reducing medical or healthcare professional exposure to the virus. In the past, Convolutional Neural Networks (CNNs) proved to be quite successful in the classification of medical images. In this study, an automatic deep learning classification method for detecting COVID-19 from chest X-ray images is suggested using a CNN. A dataset consisting of 3616 COVID-19 chest X-ray images and 10,192 healthy chest X-ray images was used. The original data were then augmented to increase the data sample to 26,000 COVID-19 and 26,000 healthy X-ray images. The dataset was enhanced using histogram equalization, spectrum, grays, cyan and normalized with NCLAHE before being applied to CNN models. Initially using the dataset, the symptoms of COVID-19 were detected by employing eleven existing CNN models; VGG16, VGG19, MobileNetV2, InceptionV3, NFNet, ResNet50, ResNet101, DenseNet, EfficientNetB7, AlexNet, and GoogLeNet. From the models, MobileNetV2 was selected for further modification to obtain a higher accuracy of COVID-19 detection. Performance evaluation of the models was demonstrated using a confusion matrix. It was observed that the modified MobileNetV2 model proposed in the study gave the highest accuracy of 98% in classifying COVID-19 and healthy chest X-rays among all the implemented CNN models. The second-best performance was achieved from the pre-trained MobileNetV2 with an accuracy of 97%, followed by VGG19 and ResNet101 with 95% accuracy for both the models. The study compares the compilation time of the models. The proposed model required the least compilation time with 2 h, 50 min and 21 s. Finally, the Wilcoxon signed-rank test was performed to test the statistical significance. The results suggest that the proposed method can efficiently identify the symptoms of infection from chest X-ray images better than existing methods.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] COVID-19 severity detection using chest X-ray segmentation and deep learning
    Singh, Tinku
    Mishra, Suryanshi
    Kalra, Riya
    Kumar, Manish
    Kim, Taehong
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [42] CoviXNet: A novel and efficient deep learning model for detection of COVID-19 using chest X-Ray images
    Srivastava, Gaurav
    Chauhan, Aninditaa
    Jangid, Mahesh
    Chaurasia, Sandeep
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [43] A deep learning based approach for automatic detection of COVID-19 cases using chest X-ray images
    Bhattacharyya, Abhijit
    Bhaik, Divyanshu
    Kumar, Sunil
    Thakur, Prayas
    Sharma, Rahul
    Pachori, Ram Bilas
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [44] Chest X-ray Classification for the Detection of COVID-19 Using Deep Learning Techniques
    Khan, Ejaz
    Rehman, Muhammad Zia Ur
    Ahmed, Fawad
    Alfouzan, Faisal Abdulaziz
    Alzahrani, Nouf M.
    Ahmad, Jawad
    SENSORS, 2022, 22 (03)
  • [45] Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images
    Kumar, N.
    Gupta, M.
    Gupta, D.
    Tiwari, S.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (1) : 469 - 478
  • [46] Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images
    N. Kumar
    M. Gupta
    D. Gupta
    S. Tiwari
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 469 - 478
  • [47] Detection of COVID-19 in Chest X-ray images using Transfer Learning with Deep Convolutional Neural Network
    Vogado, Luis
    Vieira, Pablo
    Neto, Pedro Santos
    Lopes, Lucas
    Silva, Gleison
    Araujo, Flavio
    Veras, Rodrigo
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 629 - 636
  • [48] RELIABLE COVID-19 DETECTION USING CHEST X-RAY IMAGES
    Degerli, Aysen
    Ahishali, Mete
    Kiranyaz, Serkan
    Chowdhury, Muhammad E. H.
    Gabbouj, Moncef
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 185 - 189
  • [49] Prediction of Covid-19 Based on Chest X-Ray Images Using Deep Learning with CNN
    Meem, Anika Tahsin
    Khan, Mohammad Monirujjaman
    Masud, Mehedi
    Aljahdali, Sultan
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 41 (03): : 1223 - 1240
  • [50] Classification of Chest X-ray Images to Diagnose Covid-19 using Deep Learning Techniques
    Santos Silva, Isabel Heloise
    Barros Negreiros, Ramoni Reus
    Firmino Alves, Andre Luiz
    Gomes Valadares, Dalton Cezane
    Perkusich, Angelo
    WINSYS : PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE SYSTEMS, 2022, : 93 - 100