Moving data window gradient-based iterative algorithm of combined parameter and state estimation for bilinear systems

被引:13
|
作者
Liu, Siyu [1 ]
Ding, Feng [1 ,2 ]
Hayat, Tasawar [3 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao, Peoples R China
[3] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
基金
中国国家自然科学基金;
关键词
bilinear system; iterative search; Kalman filtering; moving data window; parameter estimation; state estimation; OPTIMAL DIVIDEND PROBLEM; RECURSIVE-IDENTIFICATION; ADAPTIVE STRATEGY; MODEL; MONOLAYER; MATRIX;
D O I
10.1002/rnc.4884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The combined iterative parameter and state estimation problem is considered for bilinear state-space systems with moving average noise in this paper. There are the product terms of state variables and control variables in bilinear systems, which makes it difficult for the parameter and state estimation. By designing a bilinear state estimator based on the Kalman filtering, the states are estimated using the input-output data. Furthermore, a moving data window (MDW) is introduced, which can update the dynamical data by removing the oldest data and adding the newest measurement data. A state estimator-based MDW gradient-based iterative (MDW-GI) algorithm is proposed to estimate the unknown states and parameters jointly. Moreover, given the extended gradient-based iterative (EGI) algorithm as a comparison, the MDW-GI algorithm can reduce the impact of noise to parameter estimation and improve the parameter estimation accuracy. The numerical simulation examples validate the effectiveness of the proposed algorithm.
引用
下载
收藏
页码:2413 / 2429
页数:17
相关论文
共 50 条
  • [31] Maximum likelihood gradient-based iterative estimation algorithm for a class of input nonlinear controlled autoregressive ARMA systems
    Chen, Feiyan
    Ding, Feng
    Li, Junhong
    NONLINEAR DYNAMICS, 2015, 79 (02) : 927 - 936
  • [32] Iterative Gradient-Based Shift Estimation: To Multiscale or Not to Multiscale?
    Rais, Martin
    Morel, Jean-Michel
    Facciolo, Gabriele
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 416 - 423
  • [33] Maximum likelihood gradient-based iterative estimation algorithm for a class of input nonlinear controlled autoregressive ARMA systems
    Feiyan Chen
    Feng Ding
    Junhong Li
    Nonlinear Dynamics, 2015, 79 : 927 - 936
  • [34] Efficient gradient-based parameter estimation for dynamic models using qualitative data
    Schmiester, Leonard
    Weindl, Daniel
    Hasenauer, Jan
    BIOINFORMATICS, 2021, 37 (23) : 4493 - 4500
  • [35] Two-stage Gradient-based Iterative Estimation Methods for Controlled Autoregressive Systems Using the Measurement Data
    Feng Ding
    Lei Lv
    Jian Pan
    Xiangkui Wan
    Xue-Bo Jin
    International Journal of Control, Automation and Systems, 2020, 18 : 886 - 896
  • [36] Two-stage Gradient-based Iterative Estimation Methods for Controlled Autoregressive Systems Using the Measurement Data
    Ding, Feng
    Lv, Lei
    Pan, Jian
    Wan, Xiangkui
    Jin, Xue-Bo
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (04) : 886 - 896
  • [37] Gradient-based iterative identification methods for multivariate pseudo-linear moving average systems using the data filtering
    Feifei Wang
    Feng Ding
    Nonlinear Dynamics, 2016, 84 : 2003 - 2015
  • [38] Gradient-based iterative identification methods for multivariate pseudo-linear moving average systems using the data filtering
    Wang, Feifei
    Ding, Feng
    NONLINEAR DYNAMICS, 2016, 84 (04) : 2003 - 2015
  • [39] An online gradient-based parameter identification algorithm for the neuro-fuzzy systems
    Li, Long
    Long, Zuqiang
    Ying, Hao
    Qiao, Zhijun
    FUZZY SETS AND SYSTEMS, 2022, 426 : 27 - 45
  • [40] Enhancing gradient-based parameter estimation with an evolutionary approach
    Agyei, E
    Hatfield, K
    JOURNAL OF HYDROLOGY, 2006, 316 (1-4) : 266 - 280