Enhancing gradient-based parameter estimation with an evolutionary approach

被引:4
|
作者
Agyei, E [1 ]
Hatfield, K [1 ]
机构
[1] Univ Florida, Dept Civil & Coastal Engn, Coastal Engn Program, Gainesville, FL 32611 USA
关键词
parameter estimation; calibration; global optimization; objective function; groundwater flow; transport;
D O I
10.1016/j.jhydrol.2005.05.010
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traditionally, the calibration of groundwater models has depended on gradient-based local optimization methods. These methods provide a reasonable degree of success only when the objective function is smooth, second-order differentiable, and satisfies the Lipschitz's condition. For complicated and highly nonlinear objective functions it is almost impractical to satisfy these conditions simultaneously. Research in the calibration of conceptual rainfall-runoff models, has shown that global optimization methods are more successful in locating the global optimum in the region of multiple local optima. In this study, a global optimization technique, known as shuffle complex evolution (SCE), is coupled to the gradient-based Lavenberg-Marquardt algorithm (GBLM). The resultant hybrid global optimization algorithm (SCEGB) is then deployed in parallel testing with SCE and GBLM to solve several inverse problems where parameters of a nonlinear numerical groundwater flow model are estimated. Using perfect (i.e. noise-free) observation data, it is shown SCEGB and SCE are successful at identifying the global optimum and predicting all model parameters; whereas, the commonly applied GBLM fails to identify the optimum. In subsequent inverse simulations using observation data corrupted with noise, SCEGB and SCE again outperform GBLM by consistently producing more accurate parameter estimates. Finally, in all simulations the hybrid SCEGB is seen to be equally effective as SCE but computationally more efficient. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:266 / 280
页数:15
相关论文
共 50 条
  • [1] Gradient-based smoothing parameter selection for nonparametric regression estimation
    Henderson, Daniel J.
    Li, Qi
    Parmeter, Christopher F.
    Yao, Shuang
    [J]. JOURNAL OF ECONOMETRICS, 2015, 184 (02) : 233 - 241
  • [2] Gradient-Based Parameter Estimation in Pairwise Linear Gaussian System
    Kulikova, M. V.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (03) : 1511 - 1517
  • [3] A gradient-based, parameter-free approach to shape optimization
    Le, Chau
    Bruns, Tyler
    Tortorelli, Daniel
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (9-12) : 985 - 996
  • [4] Mutant Altimetric Parameter Estimation Using a Gradient-Based Bayesian Method
    Liao, Xianghong
    Zhang, Zenghui
    Jiang, Ge
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] Gradient-based iterative parameter estimation for Box-Jenkins systems
    Wang, Dongqing
    Yang, Guowei
    Ding, Ruifeng
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) : 1200 - 1208
  • [6] Parameter estimation in stock assessment modelling: caveats with gradient-based algorithms
    Subbey, Sam
    [J]. ICES JOURNAL OF MARINE SCIENCE, 2018, 75 (05) : 1553 - 1559
  • [7] Gradient-based Morphological Approach for Software Development Cost Estimation
    Araujo, Ricardo de A.
    Oliveira, Adriano L. I.
    Soares, Sergio
    Meira, Silvio
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 588 - 594
  • [8] Parameter estimation for a viscoplastic damage model using a gradient-based optimization algorithm
    Mahnken, R
    Johansson, M
    Runesson, K
    [J]. ENGINEERING COMPUTATIONS, 1998, 15 (6-7) : 925 - +
  • [9] Efficient gradient-based parameter estimation for dynamic models using qualitative data
    Schmiester, Leonard
    Weindl, Daniel
    Hasenauer, Jan
    [J]. BIOINFORMATICS, 2021, 37 (23) : 4493 - 4500
  • [10] An enhanced Gradient-based Optimizer for parameter estimation of various solar photovoltaic models
    Premkumar, M.
    Jangir, Pradeep
    Ramakrishnan, C.
    Kumar, C.
    Sowmya, R.
    Deb, Sanchari
    Kumar, Nallapaneni Manoj
    [J]. ENERGY REPORTS, 2022, 8 : 15249 - 15285