Moving data window gradient-based iterative algorithm of combined parameter and state estimation for bilinear systems

被引:13
|
作者
Liu, Siyu [1 ]
Ding, Feng [1 ,2 ]
Hayat, Tasawar [3 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Sch Internet Things Engn, Wuxi 214122, Jiangsu, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao, Peoples R China
[3] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
基金
中国国家自然科学基金;
关键词
bilinear system; iterative search; Kalman filtering; moving data window; parameter estimation; state estimation; OPTIMAL DIVIDEND PROBLEM; RECURSIVE-IDENTIFICATION; ADAPTIVE STRATEGY; MODEL; MONOLAYER; MATRIX;
D O I
10.1002/rnc.4884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The combined iterative parameter and state estimation problem is considered for bilinear state-space systems with moving average noise in this paper. There are the product terms of state variables and control variables in bilinear systems, which makes it difficult for the parameter and state estimation. By designing a bilinear state estimator based on the Kalman filtering, the states are estimated using the input-output data. Furthermore, a moving data window (MDW) is introduced, which can update the dynamical data by removing the oldest data and adding the newest measurement data. A state estimator-based MDW gradient-based iterative (MDW-GI) algorithm is proposed to estimate the unknown states and parameters jointly. Moreover, given the extended gradient-based iterative (EGI) algorithm as a comparison, the MDW-GI algorithm can reduce the impact of noise to parameter estimation and improve the parameter estimation accuracy. The numerical simulation examples validate the effectiveness of the proposed algorithm.
引用
下载
收藏
页码:2413 / 2429
页数:17
相关论文
共 50 条
  • [21] Combined state and parameter estimation for a bilinear state space system with moving average noise
    Zhang, Xiao
    Xu, Ling
    Ding, Feng
    Hayat, Tasawar
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (06): : 3079 - 3103
  • [22] Periodic signal modeling using the gradient-based iterative estimation algorithm
    Li Xiangli
    Zhou Lincheng
    Pan Feng
    Ding Ruifeng
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1926 - 1931
  • [23] Gradient-based Iterative Parameter Estimation for a Finite Impulse Response System with Saturation Nonlinearity
    Xiao Wang
    Yingjiao Rong
    Cheng Wang
    Feng Ding
    Tasawar Hayat
    International Journal of Control, Automation and Systems, 2022, 20 : 73 - 83
  • [24] Gradient-based Iterative Parameter Estimation for a Finite Impulse Response System with Saturation Nonlinearity
    Wang, Xiao
    Rong, Yingjiao
    Wang, Cheng
    Ding, Feng
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (01) : 73 - 83
  • [25] A GRADIENT-BASED ALGORITHM FOR THE STATE INITIALIZATION OF CONTROL-SYSTEMS
    CHENG, XJ
    HATZIADONIU, C
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1991, 6 (04) : 1349 - 1355
  • [26] The maximum likelihood least squares based iterative estimation algorithm for bilinear systems with autoregressive moving, average noise
    Li, Meihang
    Liu, Ximei
    Ding, Feng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (12): : 4861 - 4881
  • [27] Parameter estimation for a viscoplastic damage model using a gradient-based optimization algorithm
    Mahnken, R
    Johansson, M
    Runesson, K
    ENGINEERING COMPUTATIONS, 1998, 15 (6-7) : 925 - +
  • [29] Gradient-Based Iterative Identification for Wiener Nonlinear Dynamic Systems with Moving Average Noises
    Zhou, Lincheng
    Li, Xiangli
    Xu, Huigang
    Zhu, Peiyi
    ALGORITHMS, 2015, 8 (03): : 712 - 722
  • [30] Hierarchical parameter and state estimation for bilinear systems
    Zhang, Xiao
    Ding, Feng
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (02) : 275 - 290