Combined state and parameter estimation for a bilinear state space system with moving average noise

被引:129
|
作者
Zhang, Xiao [1 ]
Xu, Ling [1 ]
Ding, Feng [1 ,2 ,3 ]
Hayat, Tasawar [3 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Sch Internet Things Engn, Wuxi 214122, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266042, Peoples R China
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
SUBSPACE IDENTIFICATION; ESTIMATION ALGORITHM; DYNAMICAL-SYSTEMS; NEWTON ITERATION; DELAY; MODEL; POLYNOMIALS; RESPONSES; FILTER;
D O I
10.1016/j.jfranklin.2018.01.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the identification problem of bilinear systems with measurement noise in the form of the moving average model. In particular, we present an interactive estimation algorithm for unmeasurable states and parameters based on the hierarchical identification principle. For unknown states, we formulate a novel bilinear state observer from input-output measurements using the Kalman filter. Then a bilinear state observer based multi-innovation extended stochastic gradient (BSO-MI-ESG) algorithm is proposed to estimate the unknown system parameters. A linear filter is utilized to improve the parameter estimation accuracy and a filtering based BSO-MI-ESG algorithm is presented using the data filtering technique. In the numerical example, we illustrate the effectiveness of the proposed identification methods. (C) 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3079 / 3103
页数:25
相关论文
共 50 条
  • [1] A Hierarchical Approach for Joint Parameter and State Estimation of a Bilinear System with Autoregressive Noise
    Zhang, Xiao
    Ding, Feng
    Xu, Ling
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. MATHEMATICS, 2019, 7 (04)
  • [2] Parameter Estimation for the Hammerstein State Space System with Measurement Noise
    Han, Jiahu
    Li, Feng
    Cao, Qingfeng
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1318 - 1322
  • [3] Combined State and Parameter Estimation and Identifiability of State Space Realizations
    Yu, Ming Jui
    Bernstein, Dennis S.
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3054 - 3059
  • [4] Moving data window gradient-based iterative algorithm of combined parameter and state estimation for bilinear systems
    Liu, Siyu
    Ding, Feng
    Hayat, Tasawar
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (06) : 2413 - 2429
  • [5] Hierarchical parameter and state estimation for bilinear systems
    Zhang, Xiao
    Ding, Feng
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (02) : 275 - 290
  • [6] Parameter Estimation for Generalized Time-varying System with Moving Average Noise
    Jiang, Anning
    Ji, Yan
    [J]. 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 1297 - 1302
  • [7] Noise Moment and Parameter Estimation of State-Space Model
    Kost, Oliver
    Dunik, Jindrich
    Straka, Ondrej
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 891 - 896
  • [8] State and parameter estimation in a hydraulic system - moving horizon approach
    Baranowski, Jerzy
    Tutaj, Andrzej
    [J]. 2008 13TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-5, 2008, : 1432 - 1439
  • [9] Hierarchical multi-innovation stochastic gradient identification algorithm for estimating a bilinear state-space model with moving average noise
    Gu, Ya
    Dai, Wei
    Zhu, Quanmin
    Nouri, Hassan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 420
  • [10] Bilinear Power System State Estimation
    Gomez-Exposito, Antonio
    Gomez-Quiles, Catalina
    de la Villa Jaen, Antonio
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (01) : 493 - 501