Document-level relation extraction via graph transformer networks and temporal convolutional networks

被引:15
|
作者
Shi, Yong [2 ,4 ]
Xiao, Yang [1 ,2 ]
Quan, Pei [1 ,2 ]
Lei, MingLong [3 ]
Niu, Lingfeng [2 ,4 ]
机构
[1] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
[2] Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R China
[3] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[4] Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Document-level relation extraction; Heterogeneous graph; Temporal convolutional networks; REPRESENTATION; MODEL;
D O I
10.1016/j.patrec.2021.06.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Relation Extraction (RE) aims at extracting meaningful relation facts between entities in texts. It is an important semantic processing task in the field of natural language processing (NLP) and has many ap-plications. Traditional RE focuses on extracting entity relationships from a single input sentence. Recently, the research scope has been extended from sentence level to document level. However, compared with sentence-level RE, document-level RE, which needs to identify the inter-sentence relations from entities scattered in different sentences, is more complex and still lacks of solutions. To solve this problem, we propose a novel document-level RE method based on Heterogeneous Graph Neural Networks in this pa -per. Concretely, to obtain token embeddings containing long-distance dependency signals well, we encode the document with Temporal Convolutional Networks, whose dilated convolution and residual structure allow the effective and efficient preservation of historical information. To better describe the interaction between different elements, we construct the input documents as heterogeneous graphs with different node and edge types and utilize Graph Transformer Networks to generate semantic paths. Numerical experiments on two document-level biomedical datasets demonstrate the effectiveness of the proposed method. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 156
页数:7
相关论文
共 50 条
  • [11] Enhanced graph convolutional network based on node importance for document-level relation extraction
    Sun, Qi
    Zhang, Kun
    Huang, Kun
    Li, Xun
    Zhang, Ting
    Xu, Tiancheng
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15429 - 15439
  • [12] Automatic Graph Generation for Document-Level Relation Extraction
    Yu, Yanhua
    Shen, Fangting
    Yang, Shengli
    Li, Jie
    Wang, Yuling
    Ma, Ang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [13] Graph Convolutional Networks for Event Causality Identification with Rich Document-level Structures
    Minh Tran Phu
    Thien Huu Nguyen
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 3480 - 3490
  • [14] Inter-sentence Relation Extraction with Document-level Graph Convolutional Neural Network
    Sahu, Sunil Kumar
    Christopoulou, Fenia
    Miwa, Makoto
    Ananiadou, Sophia
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 4309 - 4316
  • [15] Multi-granularity Neural Networks for Document-Level Relation Extraction
    Chen, Xiye
    Wang, Peng
    WEB AND BIG DATA, APWEB-WAIM 2024, PT V, 2024, 14965 : 95 - 112
  • [16] Enhanced graph convolutional network based on node importance for document-level relation extraction
    Sun, Qi
    Zhang, Kun
    Huang, Kun
    Li, Xun
    Zhang, Ting
    Xu, Tiancheng
    Neural Computing and Applications, 2022, 34 (18) : 15429 - 15439
  • [17] Enhanced graph convolutional network based on node importance for document-level relation extraction
    Qi Sun
    Kun Zhang
    Kun Huang
    Xun Li
    Ting Zhang
    Tiancheng Xu
    Neural Computing and Applications, 2022, 34 : 15429 - 15439
  • [18] Global-to-Local Neural Networks for Document-Level Relation Extraction
    Wang, Difeng
    Wei Hu
    Cao, Ermei
    Sun, Weijian
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 3711 - 3721
  • [19] Document-Level Relation Extraction with Structure Enhanced Transformer Encoder
    Liu, Wanlong
    Zhou, Li
    Zeng, Dingyi
    Qu, Hong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [20] Double Graph Based Reasoning for Document-level Relation Extraction
    Zeng, Shuang
    Xu, Runxin
    Chang, Baobao
    Li, Lei
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 1630 - 1640