Enhanced graph convolutional network based on node importance for document-level relation extraction

被引:1
|
作者
Sun, Qi [1 ]
Zhang, Kun [1 ]
Huang, Kun [1 ]
Li, Xun [1 ]
Zhang, Ting [1 ]
Xu, Tiancheng [2 ]
机构
[1] School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing,210094, China
[2] Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing,210023, China
关键词
Convolution - Graph theory - Semantics;
D O I
暂无
中图分类号
学科分类号
摘要
Document-level relation extraction aims to reason complex semantic relations among entities expressed by multiple associated mentions in a document. Existing methods construct document-level graphs to model interactions between entities. However, these methods only pay attention to the connection relationship of nodes, yet ignore the importance of nodes decided by topological structure. In this paper, we propose a novel method, named Enhanced Graph Convolutional Network (EGCN), to extract document-level relations. Unlike previous methods that only model the connection relationship between two nodes, we further exploit the global topological structural information by measuring node importance. We merge these non-local relationship into a Graph Convolutional Network to aggregate relevant information. In addition, to model semantic and syntactic interactions in documents, we design a novel strategy to construct document-level heterogeneous graphs with different types of edges. Experimental results demonstrate that our EGCN outperforms the previous models by 5.54%, 1.7%, and 2.9% F1 on three public document-level relation extraction datasets. © 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
引用
收藏
页码:15429 / 15439
相关论文
共 50 条
  • [1] Enhanced graph convolutional network based on node importance for document-level relation extraction
    Sun, Qi
    Zhang, Kun
    Huang, Kun
    Li, Xun
    Zhang, Ting
    Xu, Tiancheng
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15429 - 15439
  • [2] Enhanced graph convolutional network based on node importance for document-level relation extraction
    Qi Sun
    Kun Zhang
    Kun Huang
    Xun Li
    Ting Zhang
    Tiancheng Xu
    Neural Computing and Applications, 2022, 34 : 15429 - 15439
  • [3] Inter-sentence Relation Extraction with Document-level Graph Convolutional Neural Network
    Sahu, Sunil Kumar
    Christopoulou, Fenia
    Miwa, Makoto
    Ananiadou, Sophia
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 4309 - 4316
  • [4] Denoising Graph Inference Network for Document-Level Relation Extraction
    Wang, Hailin
    Qin, Ke
    Duan, Guiduo
    Luo, Guangchun
    BIG DATA MINING AND ANALYTICS, 2023, 6 (02) : 248 - 262
  • [5] Double Graph Based Reasoning for Document-level Relation Extraction
    Zeng, Shuang
    Xu, Runxin
    Chang, Baobao
    Li, Lei
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 1630 - 1640
  • [6] Heterogenous affinity graph inference network for document-level relation extraction
    Li, Rongzhen
    Zhong, Jiang
    Xue, Zhongxuan
    Dai, Qizhu
    Li, Xue
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [7] Automatic Graph Generation for Document-Level Relation Extraction
    Yu, Yanhua
    Shen, Fangting
    Yang, Shengli
    Li, Jie
    Wang, Yuling
    Ma, Ang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [8] Document-level relation extraction via graph transformer networks and temporal convolutional networks
    Shi, Yong
    Xiao, Yang
    Quan, Pei
    Lei, MingLong
    Niu, Lingfeng
    PATTERN RECOGNITION LETTERS, 2021, 149 : 150 - 156
  • [9] Dual-Channel and Hierarchical Graph Convolutional Networks for document-level relation extraction
    Sun, Qi
    Xu, Tiancheng
    Zhang, Kun
    Huang, Kun
    Lv, Laishui
    Li, Xun
    Zhang, Ting
    Dore-Natteh, Doris
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 205
  • [10] Dual-Channel and Hierarchical Graph Convolutional Networks for document-level relation extraction
    Sun, Qi
    Xu, Tiancheng
    Zhang, Kun
    Huang, Kun
    Lv, Laishui
    Li, Xun
    Zhang, Ting
    Dore-Natteh, Doris
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 205