Enhanced graph convolutional network based on node importance for document-level relation extraction

被引:1
|
作者
Sun, Qi [1 ]
Zhang, Kun [1 ]
Huang, Kun [1 ]
Li, Xun [1 ]
Zhang, Ting [1 ]
Xu, Tiancheng [2 ]
机构
[1] School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing,210094, China
[2] Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing,210023, China
关键词
Convolution - Graph theory - Semantics;
D O I
暂无
中图分类号
学科分类号
摘要
Document-level relation extraction aims to reason complex semantic relations among entities expressed by multiple associated mentions in a document. Existing methods construct document-level graphs to model interactions between entities. However, these methods only pay attention to the connection relationship of nodes, yet ignore the importance of nodes decided by topological structure. In this paper, we propose a novel method, named Enhanced Graph Convolutional Network (EGCN), to extract document-level relations. Unlike previous methods that only model the connection relationship between two nodes, we further exploit the global topological structural information by measuring node importance. We merge these non-local relationship into a Graph Convolutional Network to aggregate relevant information. In addition, to model semantic and syntactic interactions in documents, we design a novel strategy to construct document-level heterogeneous graphs with different types of edges. Experimental results demonstrate that our EGCN outperforms the previous models by 5.54%, 1.7%, and 2.9% F1 on three public document-level relation extraction datasets. © 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
引用
收藏
页码:15429 / 15439
相关论文
共 50 条
  • [21] Improving Graph-based Document-Level Relation Extraction Model with Novel Graph Structure
    Park, Seongsik
    Yoon, Dongkeun
    Kim, Harksoo
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4379 - 4383
  • [22] Document-Level Relation Extraction with Structure Enhanced Transformer Encoder
    Liu, Wanlong
    Zhou, Li
    Zeng, Dingyi
    Qu, Hong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [23] Dialogue Relation Extraction with Document-Level Heterogeneous Graph Attention Networks
    Chen, Hui
    Hong, Pengfei
    Han, Wei
    Majumder, Navonil
    Poria, Soujanya
    COGNITIVE COMPUTATION, 2023, 15 (02) : 793 - 802
  • [24] MULTI-GRANULARITY HETEROGENEOUS GRAPH FOR DOCUMENT-LEVEL RELATION EXTRACTION
    Tang, Hengzhu
    Cao, Yanan
    Zhang, Zhenyu
    Jia, Ruipeng
    Fang, Fang
    Wang, Shi
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7683 - 7687
  • [25] Survey on Document-Level Relation Extraction
    Zhou Y.
    Huang H.
    Liu H.
    Hao Z.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2022, 50 (04): : 10 - 25
  • [26] Document-Level Relation Extraction with Reconstruction
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 14167 - 14175
  • [27] Dialogue Relation Extraction with Document-Level Heterogeneous Graph Attention Networks
    Hui Chen
    Pengfei Hong
    Wei Han
    Navonil Majumder
    Soujanya Poria
    Cognitive Computation, 2023, 15 : 793 - 802
  • [28] Document-level Relation Extraction with Relation Correlations
    Han, Ridong
    Peng, Tao
    Wang, Benyou
    Liu, Lu
    Tiwari, Prayag
    Wan, Xiang
    NEURAL NETWORKS, 2024, 171 : 14 - 24
  • [29] Document-Level Relation Extraction with Cross-sentence Reasoning Graph
    Liu, Hongfei
    Kang, Zhao
    Zhang, Lizong
    Tian, Ling
    Hua, Fujun
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT I, 2023, 13935 : 316 - 328
  • [30] HIN: Hierarchical Inference Network for Document-Level Relation Extraction
    Tang, Hengzhu
    Cao, Yanan
    Zhang, Zhenyu
    Cao, Jiangxia
    Fang, Fang
    Wang, Shi
    Yin, Pengfei
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT I, 2020, 12084 : 197 - 209