Document-level relation extraction via graph transformer networks and temporal convolutional networks

被引:15
|
作者
Shi, Yong [2 ,4 ]
Xiao, Yang [1 ,2 ]
Quan, Pei [1 ,2 ]
Lei, MingLong [3 ]
Niu, Lingfeng [2 ,4 ]
机构
[1] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
[2] Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R China
[3] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[4] Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Document-level relation extraction; Heterogeneous graph; Temporal convolutional networks; REPRESENTATION; MODEL;
D O I
10.1016/j.patrec.2021.06.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Relation Extraction (RE) aims at extracting meaningful relation facts between entities in texts. It is an important semantic processing task in the field of natural language processing (NLP) and has many ap-plications. Traditional RE focuses on extracting entity relationships from a single input sentence. Recently, the research scope has been extended from sentence level to document level. However, compared with sentence-level RE, document-level RE, which needs to identify the inter-sentence relations from entities scattered in different sentences, is more complex and still lacks of solutions. To solve this problem, we propose a novel document-level RE method based on Heterogeneous Graph Neural Networks in this pa -per. Concretely, to obtain token embeddings containing long-distance dependency signals well, we encode the document with Temporal Convolutional Networks, whose dilated convolution and residual structure allow the effective and efficient preservation of historical information. To better describe the interaction between different elements, we construct the input documents as heterogeneous graphs with different node and edge types and utilize Graph Transformer Networks to generate semantic paths. Numerical experiments on two document-level biomedical datasets demonstrate the effectiveness of the proposed method. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 156
页数:7
相关论文
共 50 条
  • [41] A Neural Edge-Editing Approach for Document-Level Relation Graph Extraction
    Makino, Kohei
    Miwa, Makoto
    Sasaki, Yutaka
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 2653 - 2662
  • [42] Document-Level Relation Extraction with Path Reasoning
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (04)
  • [43] DEERE: Document-Level Event Extraction as Relation Extraction
    Li, Jian
    Hu, Ruijuan
    Zhang, Keliang
    Liu, Haiyan
    Ma, Yanzhou
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [44] Discriminative Reasoning for Document-level Relation Extraction
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1653 - 1663
  • [45] Anaphor Assisted Document-Level Relation Extraction
    Lu, Chonggang
    Zhang, Richong
    Sun, Kai
    Kim, Jaein
    Zhang, Cunwang
    Mao, Yongyi
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 15453 - 15464
  • [46] Document-level relation extraction with three channels
    Zhang, Zhanjun
    Zhao, Shan
    Zhang, Haoyu
    Wan, Qian
    Liu, Jie
    KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [47] Improving Graph-based Document-Level Relation Extraction Model with Novel Graph Structure
    Park, Seongsik
    Yoon, Dongkeun
    Kim, Harksoo
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4379 - 4383
  • [48] Attention Guided Graph Convolutional Networks for Relation Extraction
    Guo, Zhijiang
    Zhang, Yan
    Lu, Wei
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 241 - 251
  • [49] Document-level Relation Extraction as Semantic Segmentation
    Zhang, Ningyu
    Chen, Xiang
    Xie, Xin
    Deng, Shumin
    Tan, Chuanqi
    Chen, Mosha
    Huang, Fei
    Si, Luo
    Chen, Huajun
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3999 - 4006
  • [50] DocTime: A Document-level Temporal Dependency Graph Parser
    Mathur, Puneet
    Morariu, Vlad, I
    Kaynig-Fittkau, Verena
    Gu, Jiuxiang
    Dernoncourt, Franck
    Quan Hung Tran
    Nenkova, Ani
    Manocha, Dinesh
    Jain, Rajiv
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 993 - 1009