Quadratic inequalities for Hilbert space operators

被引:6
|
作者
Khatskevich, V. A.
Ostrovskii, M. I.
Shulman, V. S.
机构
[1] ORT Braude Coll, Dept Math, IL-21982 Karmiel, Israel
[2] St Johns Univ, Dept Math & Comp Sci, Jamaica, NY 11439 USA
[3] Vologda State Tech Univ, Dept Math, Vologda 160000, Russia
关键词
Hilbert space; bounded linear operator; weak operator topology; operator inequalities;
D O I
10.1007/s00020-007-1511-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Properties of sets of solutions to inequalities of the form X* AX + B* X + X* B + C <= 0 are studied, where A, B, C are bounded Hilbert space operators, A and C are self-adjoint. Properties under consideration: closeness and interior points in standard operator topologies, convexity, non-emptiness.
引用
收藏
页码:19 / 34
页数:16
相关论文
共 50 条
  • [31] Numerical Radius Inequalities for Commutators of Hilbert Space Operators
    Hirzallah, Omar
    Kittaneh, Fuad
    Shebrawi, Khalid
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) : 739 - 749
  • [32] SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR HILBERT SPACE OPERATORS
    Hosseini, Mohsen Shah
    Omidvar, Mohsen Erfanian
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (03) : 489 - 496
  • [33] Some Inequalities for the Numerical Radius of Hilbert Space Operators
    Gao, Fugen
    Hu, Yijuan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (07)
  • [34] Norm and numerical radius inequalities for Hilbert space operators
    Bani-Domi, Watheq
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05): : 934 - 945
  • [35] Furtherance of numerical radius inequalities of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    ARCHIV DER MATHEMATIK, 2021, 117 (05) : 537 - 546
  • [36] On the Davis-Wielandt radius inequalities of Hilbert space Operators
    Alomari, M. W.
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (11): : 1804 - 1828
  • [37] Refinement of numerical radius inequalities of complex Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (3-4): : 427 - 436
  • [38] Numerical radius inequalities for Hilbert space operators. II
    El-Haddad, Mohammad
    Kittaneh, Fuad
    STUDIA MATHEMATICA, 2007, 182 (02) : 133 - 140
  • [39] Refinements of some numerical radius inequalities for Hilbert space operators
    Rashid, Mohammad H. M.
    TAMKANG JOURNAL OF MATHEMATICS, 2023, 54 (02): : 155 - 173
  • [40] Refinements of some numerical radius inequalities for Hilbert space operators
    Jena, Mamata Rani
    Das, Namita
    Sahoo, Satyajit
    FILOMAT, 2023, 37 (10) : 3043 - 3051