Refinements of some numerical radius inequalities for Hilbert space operators

被引:3
|
作者
Rashid, Mohammad H. M. [1 ]
机构
[1] Fac Sci, Dept Math & Stat, POB 7, Mutah, Jordan
来源
TAMKANG JOURNAL OF MATHEMATICS | 2023年 / 54卷 / 02期
关键词
Numerical radius; convex function operator; Mixed Schwarz inequality; Furuta inequality; Young inequality; LINEAR-OPERATORS;
D O I
10.5556/j.tkjm.54.2023.4061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some power inequalities for the numerical radius based on the recent Dragomir extension of Furuta's inequality are established. Some particular cases are also provided. Moreover, we get an improvement of the Ho center dot lder-McCarthy operator inequality in the case when r >= 1 and refine generalized inequalities involving powers of the numerical radius for sums and products of Hilbert space operators.
引用
下载
收藏
页码:155 / 173
页数:19
相关论文
共 50 条
  • [1] Refinements of some numerical radius inequalities for Hilbert space operators
    Jena, Mamata Rani
    Das, Namita
    Sahoo, Satyajit
    FILOMAT, 2023, 37 (10) : 3043 - 3051
  • [2] SOME REFINEMENTS OF NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Alizadeh, Ebrahim
    Farokhinia, Ali
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01): : 55 - 63
  • [3] Refinements of some numerical radius inequalities for Hilbert space operators
    Alomari, Mohammad W.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (07): : 1208 - 1223
  • [4] Some New Refinements of Generalized Numerical Radius Inequalities for Hilbert Space Operators
    Kais Feki
    Fuad Kittaneh
    Mediterranean Journal of Mathematics, 2022, 19
  • [5] Some New Refinements of Generalized Numerical Radius Inequalities for Hilbert Space Operators
    Feki, Kais
    Kittaneh, Fuad
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [6] Some new refinements of numerical radius inequalities for Hilbert and semi-Hilbert space operators
    Taki, Zakaria
    Kaadoud, Mohamed Chraibi
    FILOMAT, 2023, 37 (20) : 6925 - 6947
  • [7] Further refinements of generalized numerical radius inequalities for Hilbert space operators
    Hajmohamadi, Monire
    Lashkaripour, Rahmatollah
    Bakherad, Mojtaba
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) : 83 - 92
  • [8] ON SOME NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Ghasvareh, Mahdi
    Omidvar, Mohsen Erfanian
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (02): : 192 - 197
  • [9] SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR HILBERT SPACE OPERATORS
    Hosseini, Mohsen Shah
    Omidvar, Mohsen Erfanian
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (03) : 489 - 496
  • [10] Some Inequalities for the Numerical Radius of Hilbert Space Operators
    Gao, Fugen
    Hu, Yijuan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (07)