Furtherance of numerical radius inequalities of Hilbert space operators

被引:20
|
作者
Bhunia, Pintu [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
关键词
Numerical radius; Spectral radius; Operator norm; Bounded linear operator; Inequality; NORM INEQUALITIES;
D O I
10.1007/s00013-021-01641-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If A, B are bounded linear operators on a complex Hilbert space, then we prove that w(A) <= 1/2 (parallel to A parallel to + root r(vertical bar A vertical bar vertical bar A*vertical bar)), w(AB +/- BA) <= 2 root 2 parallel to B parallel to root w(2)(A) - c(2)(R(A) + c(2)(f(A))/2, where w(.), parallel to.parallel to, and r(.) are the numerical radius, the operator norm, the Crawford number, and the spectral radius respectively, and R(A), F(A) are the real part, the imaginary part of A respectively. The inequalities obtained here generalize and improve on the existing well known inequalities.
引用
收藏
页码:537 / 546
页数:10
相关论文
共 50 条
  • [1] Furtherance of numerical radius inequalities of Hilbert space operators
    Pintu Bhunia
    Kallol Paul
    [J]. Archiv der Mathematik, 2021, 117 : 537 - 546
  • [2] Numerical Radius Inequalities for Hilbert Space Operators
    Alomari, Mohammad W.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (07)
  • [3] Numerical Radius Inequalities for Hilbert Space Operators
    Mohammad W. Alomari
    [J]. Complex Analysis and Operator Theory, 2021, 15
  • [4] NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Al-Dolat, Mohammed
    Al-Zoubi, Khaldoun
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 1041 - 1049
  • [5] Numerical radius inequalities for Hilbert space operators
    Kittaneh, F
    [J]. STUDIA MATHEMATICA, 2005, 168 (01) : 73 - 80
  • [6] Numerical Radius Inequalities for Products of Hilbert Space Operators
    Hosseini, M. Shah
    Moosavi, B.
    [J]. JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (12)
  • [7] NUMERICAL RADIUS INEQUALITIES FOR PRODUCTS OF HILBERT SPACE OPERATORS
    Abu-Omar, Amer
    Kittaneh, Fuad
    [J]. JOURNAL OF OPERATOR THEORY, 2014, 72 (02) : 521 - 527
  • [8] Norm and numerical radius inequalities for Hilbert space operators
    Baharak Moosavi
    Mohsen Shah Hosseini
    [J]. The Journal of Analysis, 2023, 31 : 1393 - 1400
  • [9] ON SOME NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Ghasvareh, Mahdi
    Omidvar, Mohsen Erfanian
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (02): : 192 - 197
  • [10] Norm and numerical radius inequalities for Hilbert space operators
    Moosavi, Baharak
    Hosseini, Mohsen Shah
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (02): : 1393 - 1400