On the fractional Laplacian of variable order

被引:6
|
作者
Darve, Eric [1 ,2 ]
D'Elia, Marta [3 ]
Garrappa, Roberto [4 ,5 ]
Giusti, Andrea [6 ]
Rubio, Natalia L. [2 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] Sandia Natl Labs, Computat Sci & Anal, Livermore, CA USA
[4] Univ Bari, Dept Math, Via E Orabona 4, I-0126 Bari, Italy
[5] INdAM Res Grp GNCS, Rome, Italy
[6] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
关键词
Variable-order fractional Laplacian; Fourier transform;
D O I
10.1007/s13540-021-00003-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel definition of variable-order fractional Laplacian on R-n based on a natural generalization of the standard Riesz potential. Our definition holds for values of the fractional parameter spanning the entire open set (0, n/2). We then discuss some properties of the fractional Poisson's equation involving this operator and we compute the corresponding Green's function, for which we provide some instructive examples for specific problems.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 50 条
  • [31] Extension Problems Related to the Higher Order Fractional Laplacian
    Yu Kang Chen
    Zhen Lei
    Chang Hua Wei
    Acta Mathematica Sinica, English Series, 2018, 34 : 655 - 661
  • [32] Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Cheng, Jin
    Wang, Hong
    INVERSE PROBLEMS, 2019, 35 (12)
  • [33] Biquadratic Approximation of Fractional-Order Laplacian Operators
    El-Khazali, Reyad
    2013 IEEE 56TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2013, : 69 - 72
  • [34] Existence and uniqueness result for a variable-order fractional p(x)-Laplacian problem of Kirchhoff-type
    Mohammed Massar
    São Paulo Journal of Mathematical Sciences, 2025, 19 (1)
  • [35] Modeling viscoacoustic wave propagation using a new spatial variable-order fractional Laplacian wave equation
    Mu, Xinru
    Huang, Jianping
    Wen, Lei
    Zhuang, Subin
    GEOPHYSICS, 2021, 86 (06) : T487 - T507
  • [36] On a class of fractional Laplacian problems with variable exponents and indefinite weights
    Nguyen Thanh Chung
    Hoang Quoc Toan
    COLLECTANEA MATHEMATICA, 2020, 71 (02) : 223 - 237
  • [37] Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: Analysis and simulation
    Zheng, Xiangcheng
    Li, Yiqun
    Cheng, Jin
    Wang, Hong
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (02): : 219 - 231
  • [38] On a class of fractional Laplacian problems with variable exponents and indefinite weights
    Nguyen Thanh Chung
    Hoang Quoc Toan
    Collectanea Mathematica, 2020, 71 : 223 - 237
  • [40] Distributed order fractional diffusion equation with fractional Laplacian in axisymmetric cylindrical configuration
    Ansari, Alireza
    Derakhshan, Mohammad Hossein
    Askari, Hassan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 113