On the fractional Laplacian of variable order

被引:6
|
作者
Darve, Eric [1 ,2 ]
D'Elia, Marta [3 ]
Garrappa, Roberto [4 ,5 ]
Giusti, Andrea [6 ]
Rubio, Natalia L. [2 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] Sandia Natl Labs, Computat Sci & Anal, Livermore, CA USA
[4] Univ Bari, Dept Math, Via E Orabona 4, I-0126 Bari, Italy
[5] INdAM Res Grp GNCS, Rome, Italy
[6] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
关键词
Variable-order fractional Laplacian; Fourier transform;
D O I
10.1007/s13540-021-00003-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel definition of variable-order fractional Laplacian on R-n based on a natural generalization of the standard Riesz potential. Our definition holds for values of the fractional parameter spanning the entire open set (0, n/2). We then discuss some properties of the fractional Poisson's equation involving this operator and we compute the corresponding Green's function, for which we provide some instructive examples for specific problems.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 50 条
  • [21] On the differences of variable type and variable fractional order
    Sierociuk, Dominik
    Malesza, Wiktor
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2191 - 2196
  • [22] Variable order and distributed order fractional operators
    Lorenzo, CF
    Hartley, TT
    NONLINEAR DYNAMICS, 2002, 29 (1-4) : 57 - 98
  • [23] Variable Order and Distributed Order Fractional Operators
    Carl F. Lorenzo
    Tom T. Hartley
    Nonlinear Dynamics, 2002, 29 : 57 - 98
  • [24] On the biquadratic approximation of fractional-order Laplacian operators
    Reyad El-Khazali
    Analog Integrated Circuits and Signal Processing, 2015, 82 : 503 - 517
  • [25] Extension Problems Related to the Higher Order Fractional Laplacian
    Yu Kang CHEN
    Zhen LEI
    Chang Hua WEI
    Acta Mathematica Sinica,English Series, 2018, (04) : 655 - 661
  • [26] On the biquadratic approximation of fractional-order Laplacian operators
    El-Khazali, Reyad
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2015, 82 (03) : 503 - 517
  • [27] A Liouville theorem for the higher-order fractional Laplacian
    Zhuo, Ran
    Li, Yan
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (02)
  • [28] Extension Problems Related to the Higher Order Fractional Laplacian
    Yu Kang CHEN
    Zhen LEI
    Chang Hua WEI
    Acta Mathematica Sinica, 2018, 34 (04) : 655 - 661
  • [29] Strong unique continuation for the higher order fractional Laplacian
    Garcia-Ferrero, Maria Angeles
    Rueland, Angkana
    MATHEMATICS IN ENGINEERING, 2019, 1 (04): : 715 - 774
  • [30] Extension Problems Related to the Higher Order Fractional Laplacian
    Chen, Yu Kang
    Lei, Zhen
    Wei, Chang Hua
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (04) : 655 - 661