Imaging the Operation of a Carbon Nanotube Charge Sensor at the Nanoscale

被引:12
|
作者
Brunel, David [1 ]
Mayer, Alexandre [2 ]
Melin, Thierry [1 ]
机构
[1] CNRS UMR 8520, Inst Elect Microelect & Nanotechnol, F-59652 Villeneuve Dascq, France
[2] Fac Univ Notre Dame Paix, Lab Phys Solide, B-5000 Namur, Belgium
关键词
carbon nanotube; field effect transistor; electrostatic force microscopy; Kelvin probe microscopy; charge injection; charge detection; FIELD-EFFECT TRANSISTORS; FORCE MICROSCOPY; HYSTERESIS; MEMORY;
D O I
10.1021/nn1012435
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon nanotube field effect transistors (CNTFETs) are of great interest for nanoelectronics applications such as nonvolatile memory elements (NVMEs) or charge sensors. In this work, we use a scanning-probe approach based on a local charge perturbation of CNTFET-based NVMEs and investigate their fundamental operation from combined transport, electrostatic scanning probe techniques and atomistic simulations. We experimentally demonstrate operating devices with threshold voltages shifts opposite to conventional gating and with almost unchanged hysteresis. The former effect is quantitatively understood as the emission of a delocalized image charge pattern in the nanotube environment, in response to local charge storage, while the latter effect points out the dominant dipolar nature of hysteresis in CNTFETs. We propose a simple model for charge sensing using CNTFETs, based on the redistribution of the nanotube image charges. This model could be extended to gas or biosensing, for example.
引用
收藏
页码:5978 / 5984
页数:7
相关论文
共 50 条
  • [21] Raman spectroscopy of nanoscale carbons and of an isolated carbon nanotube
    Dresselhaus, MS
    Jorio, A
    Dresselhaus, G
    Saito, R
    Souza, AG
    Pimenta, MA
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2002, 387 : 245 - 253
  • [22] Raman spectroscopy of nanoscale carbons and of an isolated carbon nanotube
    Dresselhaus, M.S.
    Jorio, A.
    Dresselhaus, G.
    Saito, R.
    Souza Filho, A.G.
    Pimenta, M.A.
    Molecular Crystals and Liquid Crystals, 2002, 387 (01) : 21 - 29
  • [23] Carbon nanotube as a model system for nanoscale science.
    Dai, HJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : C46 - C46
  • [24] Carbon Nanotube Bundles as Nanoscale Chip to Package Interconnects
    Chiariello, Andrea G.
    Miano, Giovanni
    Maffucci, Antonio
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 58 - 61
  • [25] Under the lens: carbon nanotube and protein interaction at the nanoscale
    Marchesan, S.
    Prato, M.
    CHEMICAL COMMUNICATIONS, 2015, 51 (21) : 4347 - 4359
  • [26] Nanoscale study of conduction through carbon nanotube networks
    Stadermann, M
    Papadakis, SJ
    Falvo, MR
    Novak, J
    Snow, E
    Fu, Q
    Liu, J
    Fridman, Y
    Boland, JJ
    Superfine, R
    Washburn, S
    PHYSICAL REVIEW B, 2004, 69 (20): : 201402 - 1
  • [27] Molecular dynamics investigation into the electric charge effect on the operation of ion-based carbon nanotube oscillators
    Ansari, R.
    Ajori, S.
    Sadeghi, F.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2015, 85 : 264 - 272
  • [28] CMOS Integrated Carbon Nanotube Sensor
    Perez, M. S.
    Lerner, B.
    Obregon, P. D. Pareja
    Julian, P. M.
    Mandolesi, P. S.
    Buffa, F. A.
    Boselli, A.
    Lamagna, A.
    OLFACTION AND ELECTRONIC NOSE, PROCEEDINGS, 2009, 1137 : 381 - +
  • [29] An electrothermal carbon nanotube gas sensor
    Kawano, Takeshi
    Chiamori, Heather C.
    Suter, Marcel
    Zhou, Qin
    Sosnowchik, Brian D.
    Lin, Liwei
    NANO LETTERS, 2007, 7 (12) : 3686 - 3690
  • [30] Carbon nanotube sensor for vibrating molecules
    Remaggi, F.
    Ziani, N. Traverso
    Dolcetto, G.
    Cavaliere, F.
    Sassetti, M.
    NEW JOURNAL OF PHYSICS, 2013, 15