Imaging the Operation of a Carbon Nanotube Charge Sensor at the Nanoscale

被引:12
|
作者
Brunel, David [1 ]
Mayer, Alexandre [2 ]
Melin, Thierry [1 ]
机构
[1] CNRS UMR 8520, Inst Elect Microelect & Nanotechnol, F-59652 Villeneuve Dascq, France
[2] Fac Univ Notre Dame Paix, Lab Phys Solide, B-5000 Namur, Belgium
关键词
carbon nanotube; field effect transistor; electrostatic force microscopy; Kelvin probe microscopy; charge injection; charge detection; FIELD-EFFECT TRANSISTORS; FORCE MICROSCOPY; HYSTERESIS; MEMORY;
D O I
10.1021/nn1012435
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon nanotube field effect transistors (CNTFETs) are of great interest for nanoelectronics applications such as nonvolatile memory elements (NVMEs) or charge sensors. In this work, we use a scanning-probe approach based on a local charge perturbation of CNTFET-based NVMEs and investigate their fundamental operation from combined transport, electrostatic scanning probe techniques and atomistic simulations. We experimentally demonstrate operating devices with threshold voltages shifts opposite to conventional gating and with almost unchanged hysteresis. The former effect is quantitatively understood as the emission of a delocalized image charge pattern in the nanotube environment, in response to local charge storage, while the latter effect points out the dominant dipolar nature of hysteresis in CNTFETs. We propose a simple model for charge sensing using CNTFETs, based on the redistribution of the nanotube image charges. This model could be extended to gas or biosensing, for example.
引用
收藏
页码:5978 / 5984
页数:7
相关论文
共 50 条
  • [41] Helical gold nanotube film as stretchable micro/nanoscale strain sensor
    Deng, Chenghao
    Pan, Lujun
    Li, Chengwei
    Fu, Xin
    Cui, Ruixue
    Nasir, Habib
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (03) : 2181 - 2192
  • [42] Review of Carbon Nanotube Field Effect Transistor for Nanoscale Regime
    Maqbool, Mehwish
    Sharma, Vijay Kumar
    CURRENT NANOSCIENCE, 2024, 20 (04) : 459 - 470
  • [43] Developing nanoscale inertial measurement systems with carbon nanotube oscillators
    Wang, Xiaohong
    Jiang, Qing
    NANOTECHNOLOGY, 2008, 19 (08)
  • [44] Carbon Nanotube-Based Nanoscale Ad Hoc Networks
    Atakan, Baris
    Akan, Ozgur B.
    IEEE COMMUNICATIONS MAGAZINE, 2010, 48 (06) : 129 - 135
  • [45] Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID
    Nagel, J.
    Buchter, A.
    Xue, F.
    Kieler, O. F.
    Weimann, T.
    Kohlmann, J.
    Zorin, A. B.
    Rueffer, D.
    Russo-Averchi, E.
    Huber, R.
    Berberich, P.
    Fontcuberta i Morral, A.
    Grundler, D.
    Kleiner, R.
    Koelle, D.
    Poggio, M.
    Kemmler, M.
    PHYSICAL REVIEW B, 2013, 88 (06)
  • [46] Helical gold nanotube film as stretchable micro/nanoscale strain sensor
    Chenghao Deng
    Lujun Pan
    Chengwei Li
    Xin Fu
    Ruixue Cui
    Habib Nasir
    Journal of Materials Science, 2018, 53 : 2181 - 2192
  • [47] Molecular recognition at the nanoscale interface within carbon nanotube bundles
    Yoo, JongTae
    Fujigaya, Tsuyohiko
    Nakashima, Naotoshi
    NANOSCALE, 2013, 5 (16) : 7419 - 7424
  • [48] Carbon nanotube arrays as monolayer nanoscale membrane for enhanced desalination
    Wang, Tianzhen
    Jiang, Haifeng
    Shao, Xingyu
    Pei, Junxian
    Zheng, Huai
    Hu, Xuejiao
    DESALINATION AND WATER TREATMENT, 2021, 234 : 333 - 347
  • [49] Detection of Nanoscale Magnetic Activity Using a Single Carbon Nanotube
    Soldano, Caterina
    Kar, Swastik
    Talapatra, Saikat
    Nayak, Saroj
    Ajayan, Pulickel M.
    NANO LETTERS, 2008, 8 (12) : 4498 - 4505
  • [50] Nanoscale characterization of carbon nanotube field-effect transistors
    Freitag, M
    Johnson, AT
    STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES, 2002, 633 : 513 - 516