AN EFFICIENT ADER DISCONTINUOUS GALERKIN SCHEME FOR DIRECTLY SOLVING HAMILTON-JACOBI EQUATION

被引:3
|
作者
Duan, Junming [1 ,2 ]
Tang, Huazhong [1 ,2 ,3 ]
机构
[1] Peking Univ, Sch Math Sci, HEDPS, CAPT, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamilton-Jacobi equation; ADER; Discontinuous Galerkin methods; Local continuous spacetime Galerkin predictor; High order accuracy; FINITE-ELEMENT-METHOD; HIGH-ORDER; VOLUME SCHEMES; WENO SCHEMES; IMPLEMENTATION; MESHES; SPEED;
D O I
10.4208/jcm.1902-m2018-0189
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes an efficient ADER (Arbitrary DERivatives in space and time) discontinuous Galerkin (DG) scheme to directly solve the Hamilton-Jacobi equation. Unlike multi-stage Runge-Kutta methods used in the Runge-Kutta DG (RKDG) schemes, the ADER scheme is one-stage in time discretization, which is desirable in many applications. The ADER scheme used here relies on a local continuous spacetime Galerkin predictor instead of the usual Cauchy-Kovalewski procedure to achieve high order accuracy both in space and time. In such predictor step, a local Cauchy problem in each cell is solved based on a weak formulation of the original equations in spacetime. The resulting spacetime representation of the numerical solution provides the temporal accuracy that matches the spatial accuracy of the underlying DG solution. The scheme is formulated in the modal space and the volume integral and the numerical fluxes at the cell interfaces can be explicitly written. The explicit formulae of the scheme at third order is provided on two-dimensional structured meshes. The computational complexity of the ADER-DG scheme is compared to that of the RKDG scheme. Numerical experiments are also provided to demonstrate the accuracy and efficiency of our scheme.
引用
收藏
页码:58 / 83
页数:26
相关论文
共 50 条
  • [21] An Alternative Formulation of Discontinous Galerkin Schemes for Solving Hamilton-Jacobi Equations
    Ke, Guoyi
    Guo, Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1023 - 1044
  • [22] The effect of the least square procedure for discontinuous Galerkin methods for Hamilton-Jacobi equations
    Hu, CQ
    Lepsky, O
    Shu, CW
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 343 - 348
  • [23] Resurgence in a Hamilton-Jacobi equation
    Olivé, C
    Sauzin, D
    Seara, TM
    ANNALES DE L INSTITUT FOURIER, 2003, 53 (04) : 1185 - +
  • [24] CONTINGENT HAMILTON-JACOBI EQUATION
    FRANKOWSKA, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (11): : 295 - 298
  • [25] THE STOCHASTIC HAMILTON-JACOBI EQUATION
    Lazaro-Cami, Joan-Andreu
    Ortega, Juan-Pablo
    JOURNAL OF GEOMETRIC MECHANICS, 2009, 1 (03): : 295 - 315
  • [26] SYMMETRIES OF HAMILTON-JACOBI EQUATION
    BOYER, CP
    KALNINS, EG
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (05) : 1032 - 1045
  • [27] Schrodinger and the Hamilton-Jacobi equation
    Chauveheid, J
    Vacanti, FX
    PHYSICS ESSAYS, 2002, 15 (01) : 5 - 10
  • [28] LINEARIZATION OF THE HAMILTON-JACOBI EQUATION
    ESPINDOLA, ML
    ESPINDOLA, O
    TEIXEIRA, NL
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (07) : 1754 - 1755
  • [29] HAMILTON-JACOBI EQUATION REVISITED
    BABUJOSEPH, K
    MUKUNDA, N
    PRAMANA, 1975, 4 (01) : 1 - 18
  • [30] Quantum Hamilton-Jacobi equation
    Periwal, V
    PHYSICAL REVIEW LETTERS, 1998, 80 (20) : 4366 - 4369