AN EFFICIENT ADER DISCONTINUOUS GALERKIN SCHEME FOR DIRECTLY SOLVING HAMILTON-JACOBI EQUATION

被引:3
|
作者
Duan, Junming [1 ,2 ]
Tang, Huazhong [1 ,2 ,3 ]
机构
[1] Peking Univ, Sch Math Sci, HEDPS, CAPT, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamilton-Jacobi equation; ADER; Discontinuous Galerkin methods; Local continuous spacetime Galerkin predictor; High order accuracy; FINITE-ELEMENT-METHOD; HIGH-ORDER; VOLUME SCHEMES; WENO SCHEMES; IMPLEMENTATION; MESHES; SPEED;
D O I
10.4208/jcm.1902-m2018-0189
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes an efficient ADER (Arbitrary DERivatives in space and time) discontinuous Galerkin (DG) scheme to directly solve the Hamilton-Jacobi equation. Unlike multi-stage Runge-Kutta methods used in the Runge-Kutta DG (RKDG) schemes, the ADER scheme is one-stage in time discretization, which is desirable in many applications. The ADER scheme used here relies on a local continuous spacetime Galerkin predictor instead of the usual Cauchy-Kovalewski procedure to achieve high order accuracy both in space and time. In such predictor step, a local Cauchy problem in each cell is solved based on a weak formulation of the original equations in spacetime. The resulting spacetime representation of the numerical solution provides the temporal accuracy that matches the spatial accuracy of the underlying DG solution. The scheme is formulated in the modal space and the volume integral and the numerical fluxes at the cell interfaces can be explicitly written. The explicit formulae of the scheme at third order is provided on two-dimensional structured meshes. The computational complexity of the ADER-DG scheme is compared to that of the RKDG scheme. Numerical experiments are also provided to demonstrate the accuracy and efficiency of our scheme.
引用
收藏
页码:58 / 83
页数:26
相关论文
共 50 条
  • [41] On global discontinuous solutions of Hamilton-Jacobi equations
    Chen, GQ
    Su, B
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (02) : 113 - 118
  • [42] A PRIORI ERROR ESTIMATES FOR SEMI-DISCRETE DISCONTINUOUS GALERKIN METHODS SOLVING NONLINEAR HAMILTON-JACOBI EQUATIONS WITH SMOOTH SOLUTIONS
    Xiong, Tao
    Shu, Chi-Wang
    Zhang, Mengping
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (01) : 154 - 177
  • [43] Coupled Scheme for Hamilton-Jacobi Equations
    Sahu, Smita
    THEORY, NUMERICS AND APPLICATIONS OF HYPERBOLIC PROBLEMS II, 2018, 237 : 563 - 576
  • [44] Intersection modeling using a convergent scheme based on Hamilton-Jacobi equation
    Costeseque, G.
    Lebacque, J. P.
    PROCEEDINGS OF EWGT 2012 - 15TH MEETING OF THE EURO WORKING GROUP ON TRANSPORTATION, 2012, 54 : 736 - 748
  • [45] The Hamilton-Jacobi equation on Lie affgebroids
    Marrero, J. C.
    Sosa, D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 605 - 622
  • [46] Lagrangian submanifolds and the Hamilton-Jacobi equation
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 269 - 290
  • [47] RANDOM WALK AND THE HAMILTON-JACOBI EQUATION
    EVERETT, CJ
    ULAM, SM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (01) : 63 - 64
  • [48] ON HAMILTON-JACOBI EQUATION OF DIFFERENTIAL GAMES
    CHATTOPADHYAY, R
    INTERNATIONAL JOURNAL OF CONTROL, 1968, 7 (02) : 145 - +
  • [49] KINEMATIC REDUCTION AND THE HAMILTON-JACOBI EQUATION
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    Marrero, Juan C.
    Munoz-Lecanda, Miguel C.
    JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (03): : 207 - 237
  • [50] Error analysis of the high order scheme for homogenization of Hamilton-Jacobi equation
    Yuan, Xinpeng
    Xiong, Chunguang
    Zhu, Guoqing
    APPLIED NUMERICAL MATHEMATICS, 2018, 126 : 138 - 159