LINEARIZATION OF THE HAMILTON-JACOBI EQUATION

被引:1
|
作者
ESPINDOLA, ML
ESPINDOLA, O
TEIXEIRA, NL
机构
关键词
D O I
10.1063/1.527040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1754 / 1755
页数:2
相关论文
共 50 条
  • [1] HAMILTON-JACOBI EQUATION
    ROSENBLO.PC
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1971, 43 (04) : 245 - &
  • [2] Resurgence in a Hamilton-Jacobi equation
    Olivé, C
    Sauzin, D
    Seara, TM
    ANNALES DE L INSTITUT FOURIER, 2003, 53 (04) : 1185 - +
  • [3] CONTINGENT HAMILTON-JACOBI EQUATION
    FRANKOWSKA, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (11): : 295 - 298
  • [4] THE STOCHASTIC HAMILTON-JACOBI EQUATION
    Lazaro-Cami, Joan-Andreu
    Ortega, Juan-Pablo
    JOURNAL OF GEOMETRIC MECHANICS, 2009, 1 (03): : 295 - 315
  • [5] SYMMETRIES OF HAMILTON-JACOBI EQUATION
    BOYER, CP
    KALNINS, EG
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (05) : 1032 - 1045
  • [6] Schrodinger and the Hamilton-Jacobi equation
    Chauveheid, J
    Vacanti, FX
    PHYSICS ESSAYS, 2002, 15 (01) : 5 - 10
  • [7] HAMILTON-JACOBI EQUATION REVISITED
    BABUJOSEPH, K
    MUKUNDA, N
    PRAMANA, 1975, 4 (01) : 1 - 18
  • [8] Quantum Hamilton-Jacobi equation
    Periwal, V
    PHYSICAL REVIEW LETTERS, 1998, 80 (20) : 4366 - 4369
  • [9] The Hamilton-Jacobi equation on Lie affgebroids
    Marrero, J. C.
    Sosa, D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 605 - 622
  • [10] Lagrangian submanifolds and the Hamilton-Jacobi equation
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 269 - 290