Determining In-Depth Information of Mild Cognitive Impairment: Clustering Using Unsupervised Machine Learning

被引:0
|
作者
Hiransuthikul, Akarin [1 ,2 ]
Chunharas, Chaipat [1 ,2 ]
Thongkam, Achitpol [3 ]
Muadmanee, Wisawin [3 ]
Chotibut, Thiparat [4 ]
Phusuwan, Waragon [2 ]
Petchlorlian, Aisawan
Praditpornsilpa, Kearkiat [5 ]
机构
[1] Chulalongkorn Univ, Fac Med, Div Neurol, Dept Med, Bangkok, Thailand
[2] Chulalongkorn Univ, Chulalongkorn Cognit Clin & Computat Neurosci, Dept Med, Bangkok, Thailand
[3] Chulalongkorn Univ, Fac Med, Dept Med, Bangkok, Thailand
[4] Chulalongkorn Univ, Fac Med, Dept Med, Div Geriatr Med, Bangkok, Thailand
[5] Chulalongkorn Univ, Dept Med, Fac Med, Div Nephrol, Bangkok, Thailand
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
1352
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Machine-learning Support to Individual Diagnosis of Mild Cognitive Impairment Using Multimodal MRI and Cognitive Assessments
    De Marco, Matteo
    Beltrachini, Leandro
    Biancardi, Alberto
    Frangi, Alejandro F.
    Venneri, Annalena
    ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2017, 31 (04): : 278 - 286
  • [22] Machine Learning for the Prediction of Amyloid Positivity in Amnestic Mild Cognitive Impairment
    Kang, Sung Hoon
    Cheon, Bo Kyoung
    Kim, Ji-Sun
    Jang, Hyemin
    Kim, Hee Jin
    Park, Kyung Won
    Noh, Young
    San Lee, Jin
    Ye, Byoung Seok
    Na, Duk L.
    Lee, Hyejoo
    Seo, Sang Won
    JOURNAL OF ALZHEIMERS DISEASE, 2021, 80 (01) : 143 - 157
  • [23] Prediction of conversion to dementia using interpretable machine learning in patients with amnestic mild cognitive impairment
    Chun, Min Young
    Park, Chae Jung
    Kim, Jonghyuk
    Jeong, Jee Hyang
    Jang, Hyemin
    Kim, Kyunga
    Seo, Sang Won
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [24] Classification of Mild Cognitive Impairment in Senior Citizens from Blood Samples using Machine Learning
    Hasan, Arina
    Badruddin, Nasreen
    Yahya, Norashikin
    Ramasamy, Kalavathy
    2024 IEEE SYMPOSIUM ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ISIEA 2024, 2024,
  • [25] Unveiling neural activity changes in mild cognitive impairment using microstate analysis and machine learning
    Wu, Xiaotian
    Liu, Yanli
    Che, Jiajun
    Cheng, Nan
    Wen, Dong
    Liu, Haining
    Dong, Xianling
    JOURNAL OF ALZHEIMERS DISEASE, 2025, 103 (03) : 735 - 748
  • [26] Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review
    Ansart, Manon
    Epelbaum, Stephane
    Bassignana, Giulia
    Bone, Alexandre
    Bottani, Simona
    Cattai, Tiziana
    Couronne, Raphael
    Faouzi, Johann
    Koval, Igor
    Louis, Maxime
    Thibeau-Sutre, Elina
    Wen, Junhao
    Wild, Adam
    Burgos, Ninon
    Dormont, Didier
    Colliot, Olivier
    Durrleman, Stanley
    MEDICAL IMAGE ANALYSIS, 2021, 67
  • [27] A systematic review on early prediction of Mild cognitive impairment to alzheimers using machine learning algorithms
    Muhammed Niyas K.P.
    Thiyagarajan P.
    International Journal of Intelligent Networks, 2023, 4 : 74 - 88
  • [28] Predicting Amyloid-β Levels in Amnestic Mild Cognitive Impairment Using Machine Learning Techniques
    Ezzati, Ali
    Harvey, Danielle J.
    Habeck, Christian
    Golzar, Ashkan
    Qureshi, Irfan A.
    Zammit, Andrea R.
    Hyun, Jinshil
    Truelove-Hill, Monica
    Hall, Charles B.
    Davatzikos, Christos
    Lipton, Richard B.
    JOURNAL OF ALZHEIMERS DISEASE, 2020, 73 (03) : 1211 - 1219
  • [29] Semi-unsupervised Learning: An In-depth Parameter Analysis
    Davidson, Padraig
    Buckermann, Florian
    Steininger, Michael
    Krause, Anna
    Hotho, Andreas
    ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2021, 2021, 12873 : 51 - 66
  • [30] Prediction of Mild Cognitive Impairment Conversion Using Auxiliary Information
    Zhu, Xiaofeng
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4475 - 4481