Determining In-Depth Information of Mild Cognitive Impairment: Clustering Using Unsupervised Machine Learning

被引:0
|
作者
Hiransuthikul, Akarin [1 ,2 ]
Chunharas, Chaipat [1 ,2 ]
Thongkam, Achitpol [3 ]
Muadmanee, Wisawin [3 ]
Chotibut, Thiparat [4 ]
Phusuwan, Waragon [2 ]
Petchlorlian, Aisawan
Praditpornsilpa, Kearkiat [5 ]
机构
[1] Chulalongkorn Univ, Fac Med, Div Neurol, Dept Med, Bangkok, Thailand
[2] Chulalongkorn Univ, Chulalongkorn Cognit Clin & Computat Neurosci, Dept Med, Bangkok, Thailand
[3] Chulalongkorn Univ, Fac Med, Dept Med, Bangkok, Thailand
[4] Chulalongkorn Univ, Fac Med, Dept Med, Div Geriatr Med, Bangkok, Thailand
[5] Chulalongkorn Univ, Dept Med, Fac Med, Div Nephrol, Bangkok, Thailand
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
1352
引用
收藏
页数:3
相关论文
共 50 条
  • [41] A machine learning approach for identifying anatomical biomarkers of early mild cognitive impairment
    Ahmad, Alwani Liyana
    Sanchez-Bornot, Jose M.
    Sotero, Roberto C.
    Coyle, Damien
    Idris, Zamzuri
    Faye, Ibrahima
    PEERJ COMPUTER SCIENCE, 2024, 12
  • [42] A Machine Learning Approach to Design an Efficient Selective Screening of Mild Cognitive Impairment
    Munoz-Almaraz, Francisco J.
    Climent, Maria Teresa
    Guerrero, Maria Dolores
    Moreno, Lucrecia
    Pardo, Juan
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (155):
  • [43] Machine learning classifiers and associations of cognitive performance with hippocampal subfields in amnestic mild cognitive impairment
    Feng, Qi
    Wang, Luoyu
    Tang, Xue
    Ge, Xiuhong
    Hu, Hanjun
    Liao, Zhengluan
    Ding, Zhongxiang
    FRONTIERS IN AGING NEUROSCIENCE, 2023, 15
  • [44] Comparison of Deep Learning and Traditional Machine Learning Models for Predicting Mild Cognitive Impairment Using Plasma Proteomic Biomarkers
    Wang, Kesheng
    Adjeroh, Donald A.
    Fang, Wei
    Walter, Suzy M.
    Xiao, Danqing
    Piamjariyakul, Ubolrat
    Xu, Chun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (06)
  • [45] In-depth simulation of netted collars on scour depth control using machine-learning models
    Bagheri, Ahmad
    Bordbar, Amin
    Heidarnejad, Mohammad
    Masjedi, Alireza
    RESULTS IN ENGINEERING, 2024, 21
  • [46] Machine Learning Classification of Patients with Amnestic Mild Cognitive Impairment and Non-Amnestic Mild Cognitive Impairment from Written Picture Description Tasks
    Kim, Hana
    Hillis, Argye E.
    Themistocleous, Charalambos
    BRAIN SCIENCES, 2024, 14 (07)
  • [47] Identifying clinical features and blood biomarkers associated with mild cognitive impairment in Parkinson disease using machine learning
    Deng, Xiao
    Ning, Yilin
    Saffari, Seyed Ehsan
    Xiao, Bin
    Niu, Chenglin
    Ng, Samuel Yong Ern
    Chia, Nicole
    Choi, Xinyi
    Heng, Dede Liana
    Tan, Yi Jayne
    Ng, Ebonne
    Xu, Zheyu
    Tay, Kay-Yaw
    Au, Wing-Lok
    Ng, Adeline
    Tan, Eng-King
    Liu, Nan
    Tan, Louis C. S.
    EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 (06) : 1658 - 1666
  • [48] Development of a machine learning model to predict mild cognitive impairment using natural language processing in the absence of screening
    Robert B. Penfold
    David S. Carrell
    David J. Cronkite
    Chester Pabiniak
    Tammy Dodd
    Ashley MH Glass
    Eric Johnson
    Ella Thompson
    H. Michael Arrighi
    Paul E. Stang
    BMC Medical Informatics and Decision Making, 22
  • [49] Mild Cognitive Impairment Detection Using Machine Learning Models Trained on Data Collected from Serious Games
    Karapapas, Christos
    Goumopoulos, Christos
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [50] Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine
    Kim, Jongin
    Lee, Boreom
    HUMAN BRAIN MAPPING, 2018, 39 (09) : 3728 - 3741