An Uncertainty Principle of Paley and Wiener on Euclidean Motion Group

被引:3
|
作者
Bhowmik, Mithun [1 ]
Sen, Suparna [1 ]
机构
[1] Indian Stat Inst, Stat Math Unit, 203 BT Rd, Kolkata 700108, India
关键词
Uncertainty principle; Euclidean motion group; Schrodinger equation; SCHRODINGER-EQUATIONS; LIE-GROUPS; UNIQUENESS; THEOREM;
D O I
10.1007/s00041-016-9510-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A classical result due to Paley and Wiener characterizes the existence of a non-zero function in supported on a half line, in terms of the decay of its Fourier transform. In this paper we prove an analogue of this result for compactly supported continuous functions on the Euclidean motion group M(n). We also relate this result to a unique continuation property of solutions to the initial value problem for time-dependent Schrodinger equation on M(n).
引用
收藏
页码:1445 / 1464
页数:20
相关论文
共 50 条
  • [21] New Paley–Wiener Theorems
    Ha Huy Bang
    Vu Nhat Huy
    Complex Analysis and Operator Theory, 2020, 14
  • [22] PALEY-WIENER THEOREM
    LIEPINS, GE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A169 - A169
  • [23] Curvatures and Tolerances in the Euclidean Motion Group
    Schröcker H.-P.
    Wallner J.
    Results in Mathematics, 2005, 47 (1-2) : 132 - 146
  • [24] COMPLETENESS THEOREM OF PALEY AND WIENER
    YOUNG, RM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 76 (02) : 349 - 350
  • [25] ON PALEY-WIENER BASES
    GOSSELIN, RP
    NEUWIRTH, JH
    JOURNAL OF MATHEMATICS AND MECHANICS, 1969, 18 (09): : 871 - &
  • [26] ON THE PALEY-WIENER THEOREM
    COWLING, M
    INVENTIONES MATHEMATICAE, 1986, 83 (02) : 403 - 404
  • [27] Paley-Wiener theorems for the U(n)-spherical transform on the Heisenberg group
    Astengo, Francesca
    Di Blasio, Bianca
    Ricci, Fulvio
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (06) : 1751 - 1774
  • [28] Segal-Bargmann transform and Paley-Wiener theorems on Heisenberg motion groups
    Sen, Suparna
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2016, 7 (01) : 13 - 28
  • [29] Krein's spectral theory and the Paley-Wiener expansion for fractional Brownian motion
    Dzhaparidze, K
    van Zanten, H
    ANNALS OF PROBABILITY, 2005, 33 (02): : 620 - 644
  • [30] Fractional Paley–Wiener and Bernstein spaces
    Alessandro Monguzzi
    Marco M. Peloso
    Maura Salvatori
    Collectanea Mathematica, 2021, 72 : 615 - 643