An Uncertainty Principle of Paley and Wiener on Euclidean Motion Group

被引:3
|
作者
Bhowmik, Mithun [1 ]
Sen, Suparna [1 ]
机构
[1] Indian Stat Inst, Stat Math Unit, 203 BT Rd, Kolkata 700108, India
关键词
Uncertainty principle; Euclidean motion group; Schrodinger equation; SCHRODINGER-EQUATIONS; LIE-GROUPS; UNIQUENESS; THEOREM;
D O I
10.1007/s00041-016-9510-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A classical result due to Paley and Wiener characterizes the existence of a non-zero function in supported on a half line, in terms of the decay of its Fourier transform. In this paper we prove an analogue of this result for compactly supported continuous functions on the Euclidean motion group M(n). We also relate this result to a unique continuation property of solutions to the initial value problem for time-dependent Schrodinger equation on M(n).
引用
收藏
页码:1445 / 1464
页数:20
相关论文
共 50 条
  • [31] On kernel engineering via Paley–Wiener
    B. J. C. Baxter
    Calcolo, 2011, 48 : 21 - 31
  • [32] Deconvolution on the Euclidean motion group SE(3)
    Luo, Z. M.
    Kim, P. T.
    Kim, T. Y.
    Koo, J. Y.
    INVERSE PROBLEMS, 2011, 27 (03)
  • [33] Fredholm integral equations on the Euclidean motion group
    Chirikjian, GS
    INVERSE PROBLEMS, 1996, 12 (05) : 579 - 599
  • [34] On theorems of Beurling and Hardy for the Euclidean motion group
    Sarkar, RP
    Thangavelu, S
    TOHOKU MATHEMATICAL JOURNAL, 2005, 57 (03) : 335 - 351
  • [35] Stratifications of the Euclidean motion group with applications to robotics
    Maria Alberich-Carramiñana
    Víctor González
    Federico Thomas
    Carme Torras
    Geometriae Dedicata, 2009, 141 : 19 - 32
  • [36] On some extension of Paley Wiener theorem
    N'Da, Ettien Yves-Fernand
    Kangni, Kinvi
    CONCRETE OPERATORS, 2020, 7 (01): : 81 - 90
  • [37] New Paley-Wiener Theorems
    Ha Huy Bang
    Vu Nhat Huy
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (04)
  • [38] AN ISOMORPHISM OF PALEY-WIENER TYPE
    NIGGEMANN, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 118 (02) : 395 - 409
  • [39] GENERALIZED PALEY-WIENER THEOREMS
    Chen, Qiuhui
    Li, Luoqing
    Ren, Guangbin
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2012, 10 (02)
  • [40] STAR PRODUCT ON THE EUCLIDEAN MOTION GROUP IN THE PLANE
    Natividad, Laarni B.
    Nable, Job A.
    PROCEEDINGS OF THE TWENTY-SECOND INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2021, 22 : 209 - 218