Paley-Wiener theorems for the U(n)-spherical transform on the Heisenberg group

被引:0
|
作者
Astengo, Francesca [1 ]
Di Blasio, Bianca [2 ]
Ricci, Fulvio [3 ]
机构
[1] Dipartimento Matemat, I-16146 Genoa, Italy
[2] Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[3] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
Fourier transform; Schwartz space; Paley-Wiener Theorems; Heisenberg group; SCHWARTZ FUNCTIONS; FOURIER-TRANSFORM;
D O I
10.1007/s10231-014-0442-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove several Paley-Wiener-type theorems related to the spherical transform on the Gelfand pair (H-n U(n), U(n)), where H-n is the 2n + 1-dimensional Heisenberg group. Adopting the standard realization of the Gelfand spectrum as the Heisenberg fan in R-2, we prove that spherical transforms of U(n)-invariant functions and distributions with compact support in H-n admit unique entire extensions to C-2, and we find real-variable characterizations of such transforms. Next, we characterize the inverse spherical transforms of compactly supported functions and distributions on the fan, giving analogous characterizations.
引用
收藏
页码:1751 / 1774
页数:24
相关论文
共 50 条