Controllability of shadow reaction-diffusion systems

被引:9
|
作者
Hernandez-Santamaria, Victor [2 ]
Zuazua, Enrique [1 ,2 ,3 ]
机构
[1] Friedrich Alexander Univ, Chair Appl Anal Alexander von Humboldt Professors, Dept Math, D-91058 Erlangen, Germany
[2] Fdn Deusto, Chair Computat Math, Av Univ 24, Bilbao 48007, Basque Country, Spain
[3] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Shadow model; Reaction-diffusion systems; Hybrid systems; Null controllability; Carleman estimates; Neumann boundary conditions; SINGULAR OPTIMAL-CONTROL; NULL CONTROLLABILITY; HEAT-EQUATION; WAVE-EQUATIONS; TIME; LIMIT;
D O I
10.1016/j.jde.2019.10.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the null controllability of linear shadow models for reaction-diffusion systems arising as singular limits when the diffusivity of some of the components is very high. This leads to a coupled system where one component solves a parabolic partial differential equation (PDE) and the other one an ordinary differential equation (ODE). We analyze these shadow systems from a controllability perspective and prove two types of results. First, by employing Carleman inequalities and ODE arguments, we prove that the null controllability of the shadow model holds. This result, together with the effectiveness of the controls to control the original dynamics, is illustrated by numerical simulations. We also obtain a uniform Carleman estimate for the reaction-diffusion equations which allows to obtain the null control for the shadow system as a limit when the diffusivity tends to infinity in one of the equations. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:3781 / 3818
页数:38
相关论文
共 50 条
  • [31] ON NONLINEAR COUPLED REACTION-DIFFUSION SYSTEMS
    MEI, M
    [J]. ACTA MATHEMATICA SCIENTIA, 1989, 9 (02) : 163 - 174
  • [32] Mosaic Patterns in Reaction-Diffusion Systems
    Ezzeddine, Dalia
    Sultan, Rabih
    [J]. 12TH CHAOTIC MODELING AND SIMULATION INTERNATIONAL CONFERENCE, 2020, : 67 - 74
  • [33] Dancing waves in reaction-diffusion systems
    Abe, Y
    Yoshida, R
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (17): : 3773 - 3776
  • [34] LOCALIZED PATTERNS IN REACTION-DIFFUSION SYSTEMS
    KOGA, S
    KURAMOTO, Y
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (01): : 106 - 121
  • [35] WAVE PHENOMENA IN REACTION-DIFFUSION SYSTEMS
    Steinbock, Oliver
    Engel, Harald
    [J]. ENGINEERING OF CHEMICAL COMPLEXITY, 2013, 11 : 147 - 167
  • [36] Numerical integration of reaction-diffusion systems
    Schatzman, M
    [J]. NUMERICAL ALGORITHMS, 2002, 31 (1-4) : 247 - 269
  • [37] Replicating spots in reaction-diffusion systems
    Lee, KJ
    Swinney, HL
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (05): : 1149 - 1158
  • [38] On the stability of binary reaction-diffusion systems
    Rionero, S
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (7-9): : 773 - 784
  • [39] ON NONLINEAR COUPLED REACTION-DIFFUSION SYSTEMS
    梅茗
    [J]. Acta Mathematica Scientia, 1989, (02) : 163 - 174
  • [40] ANOMALOUS DYNAMICS IN REACTION-DIFFUSION SYSTEMS
    HAVLIN, S
    ARAUJO, M
    LARRALDE, H
    SHEHTER, A
    STANLEY, HE
    TRUNFIO, P
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1994, 16 (08): : 1039 - 1051