Controllability of shadow reaction-diffusion systems

被引:9
|
作者
Hernandez-Santamaria, Victor [2 ]
Zuazua, Enrique [1 ,2 ,3 ]
机构
[1] Friedrich Alexander Univ, Chair Appl Anal Alexander von Humboldt Professors, Dept Math, D-91058 Erlangen, Germany
[2] Fdn Deusto, Chair Computat Math, Av Univ 24, Bilbao 48007, Basque Country, Spain
[3] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Shadow model; Reaction-diffusion systems; Hybrid systems; Null controllability; Carleman estimates; Neumann boundary conditions; SINGULAR OPTIMAL-CONTROL; NULL CONTROLLABILITY; HEAT-EQUATION; WAVE-EQUATIONS; TIME; LIMIT;
D O I
10.1016/j.jde.2019.10.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the null controllability of linear shadow models for reaction-diffusion systems arising as singular limits when the diffusivity of some of the components is very high. This leads to a coupled system where one component solves a parabolic partial differential equation (PDE) and the other one an ordinary differential equation (ODE). We analyze these shadow systems from a controllability perspective and prove two types of results. First, by employing Carleman inequalities and ODE arguments, we prove that the null controllability of the shadow model holds. This result, together with the effectiveness of the controls to control the original dynamics, is illustrated by numerical simulations. We also obtain a uniform Carleman estimate for the reaction-diffusion equations which allows to obtain the null control for the shadow system as a limit when the diffusivity tends to infinity in one of the equations. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:3781 / 3818
页数:38
相关论文
共 50 条
  • [21] Passivity of fractional reaction-diffusion systems
    Cao, Yan
    Zhou, Wei-Jie
    Liu, Xiao-Zhen
    Wu, Kai-Ning
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 476
  • [22] Fluctuation in nonextensive reaction-diffusion systems
    Wu, Junlin
    Chen, Huaijun
    PHYSICA SCRIPTA, 2007, 75 (05) : 722 - 725
  • [23] ON NONLINEAR COUPLED REACTION-DIFFUSION SYSTEMS
    MEI, M
    ACTA MATHEMATICA SCIENTIA, 1989, 9 (02) : 163 - 174
  • [24] Global optimization by reaction-diffusion systems
    Mikhailov, A.S.
    Tereshko, V.M.
    Proceedings of the International Conference on Artificial Neural Networks, 1991,
  • [25] Reaction-diffusion systems for hypothesis propagation
    Kubota, T
    Espinal, F
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 543 - 546
  • [26] Turbulent transport in reaction-diffusion systems
    Il'yn, A. S.
    Sirota, V. A.
    Zybin, K. P.
    PHYSICAL REVIEW E, 2019, 99 (05)
  • [27] Distribution in flowing reaction-diffusion systems
    Kamimura, Atsushi
    Herrmann, Hans J.
    Ito, Nobuyasu
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [28] Localized patterns in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    CHAOS, 2007, 17 (03)
  • [29] Reaction-Diffusion Systems and Nonlinear Waves
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 297 - 303
  • [30] Spirals and targets in reaction-diffusion systems
    Bhattacharyay, A
    PHYSICAL REVIEW E, 2001, 64 (01): : 4 - 016113