Existence of homoclinic solution for the second order Hamiltonian systems

被引:97
|
作者
Ou, ZQ [1 ]
Tang, CL [1 ]
机构
[1] SW Normal Univ, Dept Math, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
homoclinic solution; second order Hamiltonian systems; generalized mountain pass theorem; superquadratic potentials;
D O I
10.1016/j.jmaa.2003.10.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An existence theorem of homoclinic solution is obtained for a class of the nonautonomous second order Hamiltonian systems (u) double over dot(t) - L(t)u(t) + delW(t, u(t)) = 0, For Allt is an element of R, by the minimax methods in the critical point theory, specially, the generalized mountain pass theorem, where L(t) is unnecessary uniformly positively definite for all t is an element of R, and W(t, x) satisfies the superquadratic condition W(t,x)/\x\(2) --> + infinity as \x\ --> infinity uniformly in t, and need not satisfy the global Ambrosetti-Rabinowitz condition. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 50 条
  • [41] Homoclinic solutions for a class of second order discrete Hamiltonian systems
    Tang, Xian Hua
    Lin, Xiao Yan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (03) : 609 - 622
  • [42] Homoclinic solutions for second order Hamiltonian systems near the origin
    Li-Li Wan
    Advances in Difference Equations, 2016
  • [43] Homoclinic solutions for second order Hamiltonian systems near the origin
    Wan, Li-Li
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 13
  • [44] Homoclinic solutions for a class of second-order Hamiltonian systems
    Lv, Xiang
    Lu, Shiping
    Jiang, Jifa
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) : 176 - 185
  • [45] Homoclinic solutions of nonlinear second-order Hamiltonian systems
    Schechter, Martin
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (05) : 1665 - 1683
  • [46] MULTIPLICITY OF HOMOCLINIC SOLUTIONS FOR SECOND-ORDER HAMILTONIAN SYSTEMS
    Bao, Gui
    Han, Zhiqing
    Yang, Minghai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [47] HOMOCLINIC SOLUTIONS FOR SECOND ORDER HAMILTONIAN SYSTEMS WITH GENERAL POTENTIALS
    Zhang, Ziheng
    You, Honglian
    Yuan, Rong
    MATHEMATICA SLOVACA, 2016, 66 (04) : 887 - 900
  • [48] Homoclinic Solutions for a Class of Second Order Discrete Hamiltonian Systems
    Xian Hua TANG
    Xiao Yan LIN
    Acta Mathematica Sinica, 2012, 28 (03) : 609 - 622
  • [49] Homoclinic solutions for a class of second order discrete Hamiltonian systems
    Xian Hua Tang
    Xiao Yan Lin
    Acta Mathematica Sinica, English Series, 2012, 28 : 609 - 622
  • [50] Homoclinic solutions for a class of second-order Hamiltonian systems
    Tang, X. H.
    Lin, Xiaoyan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (02) : 539 - 549