Existence of homoclinic solution for the second order Hamiltonian systems

被引:97
|
作者
Ou, ZQ [1 ]
Tang, CL [1 ]
机构
[1] SW Normal Univ, Dept Math, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
homoclinic solution; second order Hamiltonian systems; generalized mountain pass theorem; superquadratic potentials;
D O I
10.1016/j.jmaa.2003.10.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An existence theorem of homoclinic solution is obtained for a class of the nonautonomous second order Hamiltonian systems (u) double over dot(t) - L(t)u(t) + delW(t, u(t)) = 0, For Allt is an element of R, by the minimax methods in the critical point theory, specially, the generalized mountain pass theorem, where L(t) is unnecessary uniformly positively definite for all t is an element of R, and W(t, x) satisfies the superquadratic condition W(t,x)/\x\(2) --> + infinity as \x\ --> infinity uniformly in t, and need not satisfy the global Ambrosetti-Rabinowitz condition. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 50 条