Divergent orbits on S-adic homogeneous spaces

被引:0
|
作者
Tomanov, George [1 ]
机构
[1] Univ Lyon 1, CNRS, UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a semisimple algebraic group defined over a number field K and let S be a finite set of non-equivalent valuations of K containing the archimedean ones. Set G = Pi(upsilon epsilon S) G(K-upsilon) and Gamma = G(O) where O is the ring of S-integers of K. Fix upsilon epsilon S and a K-upsilon-split algebraic torus T-upsilon of G(K-upsilon). In this paper, in complement to results from [To], we prove results about the divergent orbits for the action of T-upsilon on G/Gamma by left translation.
引用
收藏
页码:969 / 985
页数:17
相关论文
共 50 条
  • [1] Divergent torus orbits in homogeneous spaces of ℚ-rank two
    Pralay Chatterjee
    Dave Witte Morris
    Israel Journal of Mathematics, 2006, 152 : 229 - 243
  • [2] Some improvements of the S-adic conjecture
    Leroy, Julien
    ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (01) : 79 - 98
  • [3] On partial rigidity of S-adic subshifts
    Donoso, Sebastian
    Maass, Alejandro
    Radic, Tristan
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2025,
  • [4] S-adic conjecture and Bratteli diagrams
    Durand, Fabien
    Leroy, Julien
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 979 - 983
  • [5] Lattices in S-adic Lie Groups
    Benoist, Yves
    Quint, Jean-Francois
    JOURNAL OF LIE THEORY, 2014, 24 (01) : 179 - 197
  • [6] Divergent torus orbits in homogeneous spaces of Q-rank two
    Chatterjee, Pralay
    Morris, Dave Witte
    ISRAEL JOURNAL OF MATHEMATICS, 2006, 152 (1) : 229 - 243
  • [7] GEOMETRY, DYNAMICS, AND ARITHMETIC OF S-ADIC SHIFTS
    Berthe, Valerie
    Steiner, Wolfgang
    Thuswaldner, Jorg M.
    ANNALES DE L INSTITUT FOURIER, 2019, 69 (03) : 1347 - 1409
  • [8] On the dimension group of unimodular S-adic subshifts
    Berthe, V
    Bernales, P. Cecchi
    Durand, F.
    Leroy, J.
    Perrin, D.
    Petite, S.
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (04): : 687 - 717
  • [9] Equidistribution in the dual group of the S-adic integers
    Roman Urban
    Czechoslovak Mathematical Journal, 2014, 64 : 911 - 931
  • [10] Bispecial Factors in the Brun S-Adic System
    Labbe, Sebastien
    Leroy, Julien
    DEVELOPMENTS IN LANGUAGE THEORY, DLT 2016, 2016, 9840 : 280 - 292