An exact bounded perfectly matched layer for time-harmonic scattering problems

被引:43
|
作者
Bermudez, A. [1 ]
Hervella-Nieto, L. [2 ]
Prieto, A. [1 ]
Rodriguez, R. [3 ]
机构
[1] Univ Santiago Compostela, Dept Matemat Aplicada, Santiago 15782, Spain
[2] Univ A Coruna, Dept Matemat, Fac Informat, La Coruna, Spain
[3] Univ Concepcion, Dept Ingn Matemat, GI2MA, Concepcion, Chile
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2007年 / 30卷 / 01期
关键词
perfectly matched layer; time-harmonic scattering; Helmholtz equation;
D O I
10.1137/060670912
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to introduce an "exact" bounded perfectly matched layer (PML) for the scalar Helmholtz equation. This PML is based on using a nonintegrable absorbing function. "Exactness" must be understood in the sense that this technique allows exact recovering of the solution to time-harmonic scattering problems in unbounded domains. In spite of the singularity of the absorbing function, the coupled fluid/PML problem is well posed when the solution is sought in an adequate weighted Sobolev space. The resulting weak formulation can be numerically solved by using standard finite elements. The high accuracy of this approach is numerically demonstrated as compared with a classical PML technique.
引用
收藏
页码:312 / 338
页数:27
相关论文
共 50 条
  • [31] Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation
    Basu, U
    Chopra, AK
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (11-12) : 1337 - 1375
  • [32] On the Attenuation of the Perfectly Matched Layer in Electromagnetic Scattering Problems with the Spectral Element Method
    Mahariq, I.
    Kuzuoglu, M.
    Tarman, I. H.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2014, 29 (09): : 701 - 710
  • [33] Scattering of a scalar time-harmonic wave by a penetrable obstacle with a thin layer
    Boutarene, K. E.
    Cocquet, P. -H.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2016, 27 (02) : 264 - 310
  • [34] An Exact and Approximate Schur Complement Method for Time-Harmonic Optimal Control Problems
    Axelsson, Owe
    Lukas, Dalibor
    Neytcheva, Maya
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2025, 32 (01)
  • [35] Adjoint state method for time-harmonic scattering problems with boundary perturbations
    Adriaens, Xavier
    Henrotte, Francois
    Geuzaine, Christophe
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 428
  • [36] LONG-TIME STABILITY AND CONVERGENCE OF THE UNIAXIAL PERFECTLY MATCHED LAYER METHOD FOR TIME-DOMAIN ACOUSTIC SCATTERING PROBLEMS
    Chen, Zhiming
    Wu, Xinming
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2632 - 2655
  • [37] Analysis of the spectrum of a Cartesian Perfectly Matched Layer (PML) approximation to acoustic scattering problems
    Kim, Seungil
    Pasciak, Joseph E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) : 420 - 430
  • [38] AN ANISOTROPIC PERFECTLY MATCHED LAYER METHOD FOR HELMHOLTZ SCATTERING PROBLEMS WITH DISCONTINUOUS WAVE NUMBER
    Chen, Zhiming
    Liang, Chao
    Xiang, Xueshuang
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) : 663 - 678
  • [39] Solving time-harmonic scattering problems based on the pole condition I: Theory
    Hohage, T
    Schmidt, F
    Zschiedrich, L
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (01) : 183 - 210
  • [40] A perfectly matched layer applied to a reactive scattering problem
    Nissen, Anna
    Karlsson, Hans O.
    Kreiss, Gunilla
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (05):