A perfectly matched layer applied to a reactive scattering problem

被引:20
|
作者
Nissen, Anna [1 ]
Karlsson, Hans O. [2 ]
Kreiss, Gunilla [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Div Comp Sci, S-75105 Uppsala, Sweden
[2] Uppsala Univ, Dept Phys & Analyt Chem, S-75120 Uppsala, Sweden
来源
JOURNAL OF CHEMICAL PHYSICS | 2010年 / 133卷 / 05期
关键词
SCHRODINGER-EQUATIONS; BOUNDARY-CONDITIONS; REPRESENTATION; ABSORPTION; RESONANCES;
D O I
10.1063/1.3458888
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The perfectly matched layer (PML) technique is applied to a reactive scattering problem for accurate domain truncation. A two-dimensional model for dissociative adsorbtion and associative desorption of H(2) from a flat surface is considered, using a finite difference spatial discretization and the Arnoldi method for time-propagation. We compare the performance of the PML to that of a monomial complex absorbing potential, a transmission-free complex absorbing potential, and to exterior complex scaling. In particular, the reflection properties due to the numerical treatment are investigated. We conclude that the PML is accurate and efficient, especially if high accuracy is of significance. Moreover, we demonstrate that the errors from the PML can be controlled at a desired accuracy, enabling efficient numerical simulations. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3458888]
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Nearly Perfectly Matched Layer is a Perfectly Matched Layer
    Hu, Wenyi
    Cummer, Steven A.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2004, 3 : 137 - 140
  • [2] Adaptive perfectly matched layer method for multiple scattering problems
    Jiang, Xue
    Zheng, Weiying
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 201 : 42 - 52
  • [3] Perfectly Matched Layer Method for Acoustic Scattering Problem by a Locally Perturbed Line with Impedance Boundary Condition
    Jiang, Xue
    Li, Xujing
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (01) : 101 - 140
  • [4] Convergence of an Anisotropic Perfectly Matched Layer Method for Helmholtz Scattering Problems
    Liang, Chao
    Xiang, Xueshuang
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2016, 9 (03) : 358 - 382
  • [5] An Adaptive Perfectly Matched Layer Method for Multiple Cavity Scattering Problems
    Wu, Xinming
    Zheng, Weiying
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (02) : 534 - 558
  • [6] Optimizing the perfectly matched layer
    INRIA, Le Chesnay, France
    Comput Methods Appl Mech Eng, 1-2 (157-171):
  • [7] Optimizing the perfectly matched layer
    Collino, F
    Monk, PB
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 164 (1-2) : 157 - 171
  • [8] GENERALIZED PERFECTLY MATCHED LAYER - AN EXTENSION OF BERENGERS PERFECTLY MATCHED LAYER BOUNDARY-CONDITION
    FANG, JY
    WU, ZH
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1995, 5 (12): : 451 - 453
  • [9] An adaptive perfectly matched layer technique for time-harmonic scattering problems
    Chen, ZM
    Liu, XZ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (02) : 645 - 671
  • [10] An exact bounded perfectly matched layer for time-harmonic scattering problems
    Bermudez, A.
    Hervella-Nieto, L.
    Prieto, A.
    Rodriguez, R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01): : 312 - 338