An exact bounded perfectly matched layer for time-harmonic scattering problems

被引:43
|
作者
Bermudez, A. [1 ]
Hervella-Nieto, L. [2 ]
Prieto, A. [1 ]
Rodriguez, R. [3 ]
机构
[1] Univ Santiago Compostela, Dept Matemat Aplicada, Santiago 15782, Spain
[2] Univ A Coruna, Dept Matemat, Fac Informat, La Coruna, Spain
[3] Univ Concepcion, Dept Ingn Matemat, GI2MA, Concepcion, Chile
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2007年 / 30卷 / 01期
关键词
perfectly matched layer; time-harmonic scattering; Helmholtz equation;
D O I
10.1137/060670912
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to introduce an "exact" bounded perfectly matched layer (PML) for the scalar Helmholtz equation. This PML is based on using a nonintegrable absorbing function. "Exactness" must be understood in the sense that this technique allows exact recovering of the solution to time-harmonic scattering problems in unbounded domains. In spite of the singularity of the absorbing function, the coupled fluid/PML problem is well posed when the solution is sought in an adequate weighted Sobolev space. The resulting weak formulation can be numerically solved by using standard finite elements. The high accuracy of this approach is numerically demonstrated as compared with a classical PML technique.
引用
收藏
页码:312 / 338
页数:27
相关论文
共 50 条
  • [21] An Adaptive Perfectly Matched Layer Method for Multiple Cavity Scattering Problems
    Wu, Xinming
    Zheng, Weiying
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (02) : 534 - 558
  • [22] A Mixed Discontinuous Galerkin Formulation for Time-Harmonic Scattering Problems
    Brown, Kevin
    Geddert, Nicholas
    Jeffrey, Ian
    2016 17TH INTERNATIONAL SYMPOSIUM ON ANTENNA TECHNOLOGY AND APPLIED ELECTROMAGNETICS (ANTEM), 2016,
  • [23] WAVENUMBER-EXPLICIT CONVERGENCE ANALYSIS FOR FINITE ELEMENT DISCRETIZATIONS OF TIME-HARMONIC WAVE PROPAGATION PROBLEMS WITH PERFECTLY MATCHED LAYERS
    Chaumont-Frelet, Theophile
    Gallistl, Dietmar
    Nicaise, Serge
    Tomezyk, Jerome
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (01) : 1 - 52
  • [24] On the solution of time-harmonic scattering problems for Maxwell's equations
    Hazard, C
    Lenoir, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (06) : 1597 - 1630
  • [25] An Exact Schur Complement Method for Time-Harmonic Optimal Control Problems
    Axelsson, Owe
    Lukas, Dalibor
    Neytcheva, Maya
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 91 - 100
  • [26] Validation of acoustic models for time-harmonic dissipative scattering problems
    Bermudez, Alfredo
    Hervella-Nieto, Luis
    Prieto, Andres
    Rodriguez, Rodolfo
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2007, 15 (01) : 95 - 121
  • [27] Perfectly Matched Layers for time-harmonic transverse electric wave propagation in cylindrical and toroidal gyrotropic media
    Colas, L.
    Jacquot, J.
    Hillairet, J.
    Helou, W.
    Tierens, W.
    Heuraux, S.
    Faudot, E.
    Lu, L.
    Urbanczyk, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 389 : 94 - 110
  • [29] An hp Adaptive Uniaxial Perfectly Matched Layer Method for Helmholtz Scattering Problems
    Chen, Zhiming
    Guo, Benqi
    Xiao, Yuanming
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 5 (2-4) : 546 - 564
  • [30] A domain embedding method for scattering problems with an absorbing boundary or a perfectly matched layer
    Heikkola, E
    Rossi, T
    Toivanen, J
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2003, 11 (02) : 159 - 174