Two-stage semi-supervised learning inversion for reservoir physical parameters

被引:4
|
作者
Song, Lei [1 ,2 ,3 ]
Yin, Xingyao [1 ,2 ,3 ]
Zong, Zhaoyun [1 ,2 ,3 ]
Yu, Songhe [1 ,2 ,3 ]
Sun, Hongchao [1 ,2 ,3 ]
机构
[1] China Univ Petr East China, Sch Geosci, Qingdao 266580, Peoples R China
[2] Pilot Natl Lab Marine Sci & Technol Qingdao, Qingdao 266580, Peoples R China
[3] Shandong Prov Key Lab Deep Oil & Gas, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Semi-supervised learning; Reservoir physical parameters inversion; Rock physics; MONTE-CARLO METHOD; ROCK-PHYSICS; SEISMIC DATA; PREDICTION; VELOCITY; POROSITY; ATTENUATION; LITHOLOGY; MODEL;
D O I
10.1016/j.petrol.2022.110794
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reservoir physical parameters are crucial indexes for reservoir description. Deep learning is a data-driven algorithm, which may avoid some issues in conventional deterministic and stochastic inversion methods, such as cumulative and approximate errors. We develop a two-stage semi-supervised learning inversion method to predict porosity, shale content, and water saturation. Firstly, an inversion network is designed to predict physical parameters from pre-stack seismic data and initial models. The Spatio-temporal characteristics of seismic data and the low-frequency structural information of the initial model can be utilized efficiently by the network. In addition, considering the high production cost of label data in exploration geophysics, we construct a semi supervised learning inversion workflow to relieve the dependence on the label in training. The rock physics model and seismic convolution forward model are invoked as a forward process in the workflow. Finally, we propose a two-stage inversion strategy to deal with the inversion of physical parameters with different data characteristics. The proposed method is applied to a field survey successfully. A high-resolution and high accuracy inversion result can be obtained with our method, and potential locations of the gas reservoir can be indicated by prediction results. Meanwhile, the comparisons of the two stages demonstrate that illusions in predicted water saturation can be eliminated effectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] PRIVILEGED SEMI-SUPERVISED LEARNING
    Chen, Xingyu
    Gong, Chen
    Ma, Chao
    Huang, Xiaolin
    Yang, Jie
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2999 - 3003
  • [42] Introduction to semi-supervised learning
    Goldberg, Xiaojin
    Synthesis Lectures on Artificial Intelligence and Machine Learning, 2009, 6 : 1 - 116
  • [43] On Semi-Supervised Learning and Sparsity
    Balinsky, Alexander
    Balinsky, Helen
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 3083 - +
  • [44] A survey on semi-supervised learning
    Van Engelen, Jesper E.
    Hoos, Holger H.
    MACHINE LEARNING, 2020, 109 (02) : 373 - 440
  • [45] Semi-supervised learning with trees
    Kemp, C
    Griffiths, TL
    Stromsten, S
    Tenenbaum, JB
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 257 - 264
  • [46] Human Semi-Supervised Learning
    Gibson, Bryan R.
    Rogers, Timothy T.
    Zhu, Xiaojin
    TOPICS IN COGNITIVE SCIENCE, 2013, 5 (01) : 132 - 172
  • [47] Semi-supervised distribution learning
    Wen, Mengtao
    Jia, Yinxu
    Ren, Haojie
    Wang, Zhaojun
    Zou, Changliang
    BIOMETRIKA, 2024, 112 (01)
  • [48] Universal Semi-Supervised Learning
    Huang, Zhuo
    Xue, Chao
    Han, Bo
    Yang, Jian
    Gong, Chen
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [49] Adversarial Dropout for Supervised and Semi-Supervised Learning
    Park, Sungrae
    Park, JunKeon
    Shin, Su-Jin
    Moon, Il-Chul
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3917 - 3924
  • [50] Supervised and semi-supervised machine learning ranking
    Vittaut, Jean-Noel
    Gallinari, Patrick
    COMPARATIVE EVALUATION OF XML INFORMATION RETRIEVAL SYSTEMS, 2007, 4518 : 213 - 222