Two-stage semi-supervised learning inversion for reservoir physical parameters

被引:4
|
作者
Song, Lei [1 ,2 ,3 ]
Yin, Xingyao [1 ,2 ,3 ]
Zong, Zhaoyun [1 ,2 ,3 ]
Yu, Songhe [1 ,2 ,3 ]
Sun, Hongchao [1 ,2 ,3 ]
机构
[1] China Univ Petr East China, Sch Geosci, Qingdao 266580, Peoples R China
[2] Pilot Natl Lab Marine Sci & Technol Qingdao, Qingdao 266580, Peoples R China
[3] Shandong Prov Key Lab Deep Oil & Gas, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Semi-supervised learning; Reservoir physical parameters inversion; Rock physics; MONTE-CARLO METHOD; ROCK-PHYSICS; SEISMIC DATA; PREDICTION; VELOCITY; POROSITY; ATTENUATION; LITHOLOGY; MODEL;
D O I
10.1016/j.petrol.2022.110794
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reservoir physical parameters are crucial indexes for reservoir description. Deep learning is a data-driven algorithm, which may avoid some issues in conventional deterministic and stochastic inversion methods, such as cumulative and approximate errors. We develop a two-stage semi-supervised learning inversion method to predict porosity, shale content, and water saturation. Firstly, an inversion network is designed to predict physical parameters from pre-stack seismic data and initial models. The Spatio-temporal characteristics of seismic data and the low-frequency structural information of the initial model can be utilized efficiently by the network. In addition, considering the high production cost of label data in exploration geophysics, we construct a semi supervised learning inversion workflow to relieve the dependence on the label in training. The rock physics model and seismic convolution forward model are invoked as a forward process in the workflow. Finally, we propose a two-stage inversion strategy to deal with the inversion of physical parameters with different data characteristics. The proposed method is applied to a field survey successfully. A high-resolution and high accuracy inversion result can be obtained with our method, and potential locations of the gas reservoir can be indicated by prediction results. Meanwhile, the comparisons of the two stages demonstrate that illusions in predicted water saturation can be eliminated effectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Semi-supervised learning by disagreement
    Zhou, Zhi-Hua
    Li, Ming
    KNOWLEDGE AND INFORMATION SYSTEMS, 2010, 24 (03) : 415 - 439
  • [32] A survey on semi-supervised learning
    Jesper E. van Engelen
    Holger H. Hoos
    Machine Learning, 2020, 109 : 373 - 440
  • [33] Semi-supervised Sequence Learning
    Dai, Andrew M.
    Le, Quoc V.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [34] Semi-supervised learning by disagreement
    Zhi-Hua Zhou
    Ming Li
    Knowledge and Information Systems, 2010, 24 : 415 - 439
  • [35] Semi-Supervised Incremental Learning
    Bouchachia, Abdelhamid
    Prossegger, Markus
    Duman, Hakan
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [36] Deep Semi-Supervised Learning
    Hailat, Zeyad
    Komarichev, Artem
    Chen, Xue-Wen
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2154 - 2159
  • [37] Semi-Supervised Learning by Disagreement
    Zhou, Zhi-Hua
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 93 - 93
  • [38] Reliable Semi-supervised Learning
    Shao, Junming
    Huang, Chen
    Yang, Qinli
    Luo, Guangchun
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1197 - 1202
  • [39] Semi-supervised Learning with Transfer Learning
    Zhou, Huiwei
    Zhang, Yan
    Huang, Degen
    Li, Lishuang
    CHINESE COMPUTATIONAL LINGUISTICS AND NATURAL LANGUAGE PROCESSING BASED ON NATURALLY ANNOTATED BIG DATA, 2013, 8208 : 109 - 119
  • [40] Semi-supervised learning with dropouts
    Abhishek
    Yadav, Rakesh Kumar
    Verma, Shekhar
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 215