InGaN epilayer characterization by microfocused x-ray reciprocal space mapping

被引:4
|
作者
Kachkanov, V. [1 ]
Dolbnya, I. P. [1 ]
O'Donnell, K. P. [2 ]
Martin, R. W. [2 ]
Edwards, P. R. [2 ]
Pereira, S. [3 ]
机构
[1] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England
[2] Univ Strathclyde, SUPA, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[3] Univ Aveiro, Dept Phys, CICECO, P-3810193 Aveiro, Portugal
关键词
GAN; DIFFRACTION; HETEROSTRUCTURE; DIFFRACTOMETRY;
D O I
10.1063/1.3658619
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report the use of microfocused three-dimensional x-ray reciprocal space mapping to study InGaN epilayers with average InN content similar to 20%-22%. Analysis of the full volume of reciprocal space, while probing samples on the microscale with a focused x-ray beam, allowed us to gain valuable information about the nanostructure of InN-rich InGaN epilayers. It is found that "seed" InGaN mosaic nanocrystallites are twisted with respect to the ensemble average and strain-free. The initial stages of InGaN-on-GaN epitaxial growth, therefore, conform to the Volmer-Weber growth mechanism with "seeds" nucleated on strain fields generated by the a-type edge dislocations. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3658619]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] High resolution x-ray reciprocal space mapping
    Bauer, G
    Li, JH
    Holy, V
    [J]. ACTA PHYSICA POLONICA A, 1996, 89 (02) : 115 - 127
  • [2] In situ synchrotron X-ray reciprocal space mapping during InGaN/GaN heterostructure nanowire growth
    Tomohiro, Uesugi
    Sasaki, Takuo
    Sugitani, Kanya
    Takahasi, Masamitu
    [J]. 2019 COMPOUND SEMICONDUCTOR WEEK (CSW), 2019,
  • [3] Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping
    Pereira, S
    Correia, MR
    Pereira, E
    O'Donnell, KP
    Alves, E
    Sequeira, AD
    Franco, N
    Watson, IM
    Deatcher, CJ
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (21) : 3913 - 3915
  • [4] Characterization of a microfocused circularly polarized x-ray probe
    Pollmann, J
    Srajer, G
    Maser, J
    Lang, JC
    Nelson, CS
    Venkataraman, CT
    Isaacs, ED
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (06): : 2386 - 2390
  • [5] High resolution X-ray Reciprocal Space Mapping of wavy layers
    Kidd, P
    Fewster, PF
    [J]. POLYCRYSTALLINE THIN FILMS - STRUCTURE, TEXTURE, PROPERTIES AND APPLICATIONS III, 1997, 472 : 257 - 268
  • [6] Structural characterization of reactive ion etched semiconductor nanostructures using x-ray reciprocal space mapping
    Bauer, G
    Darhuber, AA
    Holy, V
    [J]. DIAGNOSTIC TECHNIQUES FOR SEMICONDUCTOR MATERIALS PROCESSING II, 1996, 406 : 457 - 468
  • [7] Structural characterization of reactive ion etched semiconductor nanostructures using x-ray reciprocal space mapping
    Bauer, G
    Darhuber, AA
    Holy, V
    [J]. SURFACE/INTERFACE AND STRESS EFFECTS IN ELECTRONIC MATERIALS NANOSTRUCTURES, 1996, 405 : 359 - 370
  • [8] Reciprocal space mapping and strain scanning using X-ray diffraction microscopy
    [J]. Poulsen, H.F. (hfpo@fysik.dtu.dk), 1600, Wiley-Blackwell (51):
  • [9] BIOMOLECULAR CRYSTALS: FROM X-RAY DIFFRACTION TOPOGRAPHY TO RECIPROCAL SPACE MAPPING
    Stojanoff, V.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : C44 - C44
  • [10] Early detection of nanoparticle growth from x-ray reciprocal space mapping
    Zatsepin, Nadia A.
    Dilanian, Ruben A.
    Nikulin, Andrei Y.
    Gable, Brian M.
    Muddle, Barry C.
    Sakata, Osami
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (03)