Vortons with Abelian and non-Abelian currents and their stability

被引:1
|
作者
Tallarita, Gianni Y. [1 ]
Peterson, Adam [2 ]
Bolognesi, Stefano [3 ,4 ]
Bedford, Peter [2 ]
机构
[1] Univ Adolfo Ibanez, Fac Artes Liber, Dept Ciencias, Santiago 7941169, Chile
[2] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[3] Univ Pisa, Dept Phys E Fermi, 3 Ed C, I-56127 Pisa, Italy
[4] INFN, Sez Pisa Largo Pontecorvo, 3 Ed C, I-56127 Pisa, Italy
来源
EUROPEAN PHYSICAL JOURNAL C | 2020年 / 80卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
COSMIC VORTONS; VORTICES;
D O I
10.1140/epjc/s10052-019-7540-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We explore vorton solutions in the Witten's U(1)xU(1) model for cosmic strings and in a modified version U(1)xSO(3) obtained by introducing a triplet of non-Abelian fields to condense inside the string. We restrict to the case in which the unbroken symmetry in the bulk remains global. The vorton solutions are found numerically for certain choices of parameters and compared with an analytical solutions obtained in the thin vorton limit. We also discuss the vorton decay into Q-rings (or spinning Q-balls) and, to some extent, the time dependent behavior of vortons above the charge threshold.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Abelian and non-Abelian Weyl gravitoelectromagnetism
    Ramos, J.
    de Montigny, M.
    Khanna, F. C.
    ANNALS OF PHYSICS, 2020, 418
  • [12] Non-Abelian current oscillations in harmonic string loops: Existence of throbbing vortons
    Carter, Brandon
    PHYSICAL REVIEW D, 2011, 83 (12):
  • [13] Abelian representation for the non-Abelian Wilson loop and the non-Abelian Stokes theorem on the lattice
    Zubkov, MA
    PHYSICAL REVIEW D, 2003, 68 (05)
  • [14] Abelian and Non-Abelian Triangle Mysteries
    Mitchell, Lon
    Jones, Michael A.
    Shelton, Brittany
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (08): : 808 - 813
  • [15] HOW NON-ABELIAN IS NON-ABELIAN GAUGE-THEORY
    CRABB, MC
    SUTHERLAND, WA
    QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (183): : 279 - 290
  • [16] Stability analysis of non-Abelian electric fields
    Pereira, Jude
    Vachaspati, Tanmay
    PHYSICAL REVIEW D, 2022, 106 (09)
  • [17] Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
    Nitta, Muneto
    NUCLEAR PHYSICS B, 2015, 899 : 78 - 90
  • [18] Note on Schwinger mechanism and a non-Abelian instability in a non-Abelian plasma
    Nair, V. P.
    Yelnikov, Alexandr
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [19] Non-abelian cohomology of abelian Anosov actions
    Katok, A
    Nitica, V
    Török, A
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 259 - 288
  • [20] Stability and new non-Abelian zeta functions
    Weng, L
    NUMBER THEORETIC METHODS: FUTURE TRENDS, 2002, 8 : 405 - 419