Vortons with Abelian and non-Abelian currents and their stability

被引:1
|
作者
Tallarita, Gianni Y. [1 ]
Peterson, Adam [2 ]
Bolognesi, Stefano [3 ,4 ]
Bedford, Peter [2 ]
机构
[1] Univ Adolfo Ibanez, Fac Artes Liber, Dept Ciencias, Santiago 7941169, Chile
[2] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[3] Univ Pisa, Dept Phys E Fermi, 3 Ed C, I-56127 Pisa, Italy
[4] INFN, Sez Pisa Largo Pontecorvo, 3 Ed C, I-56127 Pisa, Italy
来源
EUROPEAN PHYSICAL JOURNAL C | 2020年 / 80卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
COSMIC VORTONS; VORTICES;
D O I
10.1140/epjc/s10052-019-7540-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We explore vorton solutions in the Witten's U(1)xU(1) model for cosmic strings and in a modified version U(1)xSO(3) obtained by introducing a triplet of non-Abelian fields to condense inside the string. We restrict to the case in which the unbroken symmetry in the bulk remains global. The vorton solutions are found numerically for certain choices of parameters and compared with an analytical solutions obtained in the thin vorton limit. We also discuss the vorton decay into Q-rings (or spinning Q-balls) and, to some extent, the time dependent behavior of vortons above the charge threshold.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] ON NON-ABELIAN DUALITY
    ALVAREZ, E
    ALVAREZGAUME, L
    LOZANO, Y
    NUCLEAR PHYSICS B, 1994, 424 (01) : 155 - 183
  • [42] Majorana meets Coxeter: Non-Abelian Majorana fermions and non-Abelian statistics
    Yasui, Shigehiro
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW B, 2011, 83 (13):
  • [43] INFINITE NON-ABELIAN GROUPS WITH INVARIANCE CONDITION FOR INFINITE NON-ABELIAN SUBGROUPS
    CHERNIKO.SN
    DOKLADY AKADEMII NAUK SSSR, 1970, 194 (06): : 1280 - &
  • [44] THE NON-ABELIAN SOLITONS FOR THE SL(2,C) NON-ABELIAN TODA LATTICE
    POPOWICZ, Z
    INVERSE PROBLEMS, 1987, 3 (02) : 329 - 340
  • [45] Synthetic non-Abelian statistics by Abelian anyon condensation
    You, Yi-Zhuang
    Jian, Chao-Ming
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2013, 87 (04)
  • [46] Active error correction for Abelian and non-Abelian anyons
    Wootton, James R.
    Hutter, Adrian
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [47] Non-Abelian gauge theories, prepotentials, and Abelian differentials
    A. V. Marshakov
    Theoretical and Mathematical Physics, 2009, 159 : 598 - 617
  • [48] Abelian and non-abelian branes in WZW models and gerbes
    Gawedzki, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 258 (01) : 23 - 73
  • [49] Abelian and non-abelian Paley type group schemes
    Yu Qing Chen
    Tao Feng
    Designs, Codes and Cryptography, 2013, 68 : 141 - 154
  • [50] Topological Entanglement in Abelian and Non-Abelian Excitation Eigenstates
    Papic, Z.
    Bernevig, B. A.
    Regnault, N.
    PHYSICAL REVIEW LETTERS, 2011, 106 (05)