On the Minimization of Total Mean Curvature

被引:10
|
作者
Dalphin, J. [1 ]
Henrot, A. [1 ]
Masnou, S. [2 ]
Takahashi, T. [3 ]
机构
[1] Univ Lorraine, Inst Elie Cartan Lorraine, CNRS, UMR 7502, BP 70239, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[3] Inria Nancy Grand Est, F-54600 Villers Les Nancy, France
关键词
Total mean curvature; Minkowski inequality; Shape optimization; Geometric inequality; INEQUALITIES; SUBMANIFOLDS;
D O I
10.1007/s12220-015-9646-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are interested in possible extensions of an inequality due to Minkowski: integral(partial derivative Omega) H dA >= root 4 pi A(partial derivative Omega) from convex smooth sets to any regular open set Omega subset of R-3, where H denotes the scalar mean curvature of partial derivative Omega and A the area. We prove that this inequality holds true for axisymmetric domains which are convex in the direction orthogonal to the axis of symmetry. We also show that this inequality cannot be true in more general situations. However, we prove that integral(partial derivative Omega) vertical bar H vertical bar dA >= root 4 pi A(partial derivative Omega) remains true for any axisymmetric domain.
引用
收藏
页码:2729 / 2750
页数:22
相关论文
共 50 条