On the Minimization of Total Mean Curvature

被引:10
|
作者
Dalphin, J. [1 ]
Henrot, A. [1 ]
Masnou, S. [2 ]
Takahashi, T. [3 ]
机构
[1] Univ Lorraine, Inst Elie Cartan Lorraine, CNRS, UMR 7502, BP 70239, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[3] Inria Nancy Grand Est, F-54600 Villers Les Nancy, France
关键词
Total mean curvature; Minkowski inequality; Shape optimization; Geometric inequality; INEQUALITIES; SUBMANIFOLDS;
D O I
10.1007/s12220-015-9646-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are interested in possible extensions of an inequality due to Minkowski: integral(partial derivative Omega) H dA >= root 4 pi A(partial derivative Omega) from convex smooth sets to any regular open set Omega subset of R-3, where H denotes the scalar mean curvature of partial derivative Omega and A the area. We prove that this inequality holds true for axisymmetric domains which are convex in the direction orthogonal to the axis of symmetry. We also show that this inequality cannot be true in more general situations. However, we prove that integral(partial derivative Omega) vertical bar H vertical bar dA >= root 4 pi A(partial derivative Omega) remains true for any axisymmetric domain.
引用
收藏
页码:2729 / 2750
页数:22
相关论文
共 50 条
  • [21] On the Kinematic Formula of the Total Mean Curvature Matrix
    Zeng, Chunna
    Ma, Lei
    Tong, Yin
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (01): : 43 - 54
  • [22] MEMBRANE INTERACTIONS AND TOTAL MEAN-CURVATURE
    ONDER, M
    TUCKER, RW
    PHYSICS LETTERS B, 1988, 202 (04) : 501 - 504
  • [23] Total mean curvature of positively curved hypersurfaces
    Chan, Ying-Ying
    Cheung, Leung-Fu
    Leung, Pui-Fai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (02) : 397 - 402
  • [24] On the compactness of hypersurfaces with finite total curvature via mean curvature flow
    Cao, Shunjuan
    Zhao, Entao
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 158
  • [25] Total mean curvature of the boundary and nonnegative scalar curvature fill-ins
    Shi, Yuguang
    Wang, Wenlong
    Wei, Guodong
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (784): : 215 - 250
  • [26] Total Mean Curvature, Scalar Curvature, and a Variational Analog of Brown–York Mass
    Christos Mantoulidis
    Pengzi Miao
    Communications in Mathematical Physics, 2017, 352 : 703 - 718
  • [28] VARIATIONAL PROBLEMS OF TOTAL MEAN CURVATURE OF SUBMANIFOLDS IN A SPHERE
    Guo, Zhen
    Yin, Bangchao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (08) : 3563 - 3568
  • [29] An estimate for the total mean curvature in negatively curved spaces
    Borbely, A
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (02) : 267 - 273
  • [30] COMPUTING CURVATURE, MEAN CURVATURE AND WEIGHTED MEAN CURVATURE
    Gong, Yuanhao
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 266 - 270