Total mean curvature of the boundary and nonnegative scalar curvature fill-ins

被引:6
|
作者
Shi, Yuguang [1 ]
Wang, Wenlong [2 ,3 ]
Wei, Guodong [4 ]
机构
[1] Peking Univ, Sch Math Sci, Key Lab Pure & Appl Math, Beijing 100871, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
来源
基金
国家重点研发计划;
关键词
QUASI-SPHERICAL METRICS; POSITIVE MASS THEOREM; COMPACT MANIFOLDS; RICCI CURVATURE; BROWN-YORK; ENERGY; PROOF; CONJECTURE; DIRECTION; RIGIDITY;
D O I
10.1515/crelle-2021-0072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part of this paper, we prove the extensibility of an arbitrary boundary metric to a positive scalar curvature (PSC) metric inside for a compact manifold with boundary, completely solving an open problem due to Gromov (see Question 1.1). Then we introduce a fill-in invariant (see Definition 1.2) and discuss its relationship with the positive mass theorems for asymptotically flat (AF) and asymptotically hyperbolic (AH) manifolds. Moreover, we prove that the positive mass theorem for All manifolds implies that for AF manifolds via this fill-in invariant. In the end, we give some estimates for the fill-in invariant, which provide some partially affirmative answers to Gromov's two conjectures formulated in [M. Gromov, Four lectures on scalar curvature, preprint 2019] (see Conjecture 1.1 and Conjecture 1.2 below).
引用
收藏
页码:215 / 250
页数:36
相关论文
共 50 条
  • [1] FILL-INS OF NONNEGATIVE SCALAR CURVATURE, STATIC METRICS, AND QUASI-LOCAL MASS
    Jauregui, Jeffrey L.
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 261 (02) : 417 - 444
  • [2] NONEXISTENCE OF NNSC FILL-INS WITH LARGE MEAN CURVATURE
    Miao, Pengzi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (06) : 2705 - 2709
  • [3] Extensions and fill-ins with non-negative scalar curvature
    Jauregui, Jeffrey L.
    Miao, Pengzi
    Tam, Luen-Fai
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (19)
  • [4] Fill-ins with scalar curvature lower bounds and applications to positive mass theorems
    Mccormick, Stephen
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2024, 65 (04)
  • [5] On the fill-in of nonnegative scalar curvature metrics
    Shi, Yuguang
    Wang, Wenlong
    Wei, Guodong
    Zhu, Jintian
    MATHEMATISCHE ANNALEN, 2021, 379 (1-2) : 235 - 270
  • [6] On the fill-in of nonnegative scalar curvature metrics
    Yuguang Shi
    Wenlong Wang
    Guodong Wei
    Jintian Zhu
    Mathematische Annalen, 2021, 379 : 235 - 270
  • [7] Static Manifolds with Boundary and Rigidity of Scalar Curvature and Mean Curvature
    Sheng, Hongyi
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (07)
  • [8] Critical points of the Total Scalar Curvature plus Total Mean Curvature functional
    Araújo, H
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (01) : 85 - 107
  • [9] HYPERSURFACES WITH NONNEGATIVE SCALAR CURVATURE
    Huang, Lan-Hsuan
    Wu, Damin
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2013, 95 (02) : 249 - 278
  • [10] Complete Self-similar Hypersurfaces to the Mean Curvature Flow with Nonnegative Constant Scalar Curvature
    Luo, Yong
    Sun, Linlin
    Yin, Jiabin
    FRONTIERS OF MATHEMATICS, 2023, 18 (02): : 417 - 430