Total mean curvature of the boundary and nonnegative scalar curvature fill-ins

被引:6
|
作者
Shi, Yuguang [1 ]
Wang, Wenlong [2 ,3 ]
Wei, Guodong [4 ]
机构
[1] Peking Univ, Sch Math Sci, Key Lab Pure & Appl Math, Beijing 100871, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2022年 / 2022卷 / 784期
基金
国家重点研发计划;
关键词
QUASI-SPHERICAL METRICS; POSITIVE MASS THEOREM; COMPACT MANIFOLDS; RICCI CURVATURE; BROWN-YORK; ENERGY; PROOF; CONJECTURE; DIRECTION; RIGIDITY;
D O I
10.1515/crelle-2021-0072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part of this paper, we prove the extensibility of an arbitrary boundary metric to a positive scalar curvature (PSC) metric inside for a compact manifold with boundary, completely solving an open problem due to Gromov (see Question 1.1). Then we introduce a fill-in invariant (see Definition 1.2) and discuss its relationship with the positive mass theorems for asymptotically flat (AF) and asymptotically hyperbolic (AH) manifolds. Moreover, we prove that the positive mass theorem for All manifolds implies that for AF manifolds via this fill-in invariant. In the end, we give some estimates for the fill-in invariant, which provide some partially affirmative answers to Gromov's two conjectures formulated in [M. Gromov, Four lectures on scalar curvature, preprint 2019] (see Conjecture 1.1 and Conjecture 1.2 below).
引用
收藏
页码:215 / 250
页数:36
相关论文
共 50 条