Finite Total Curvature and Soap Bubbles With Almost Constant Higher-Order Mean Curvature

被引:0
|
作者
Santilli, Mario [1 ]
机构
[1] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, I-67100 Laquila, Italy
关键词
ALEXANDROVS THEOREM;
D O I
10.1093/imrn/rnae159
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given $ n \geq 2 $ and $ k \in \{2, \ldots , n\} $, we study the asymptotic behaviour of sequences of bounded $C<^>{2}$-domains, whose $ k $-th mean curvature functions converge in $ L<^>{1} $-norm to a constant. Under certain curvature assumptions, we prove that finite unions of mutually tangent balls are the only possible limits with respect to convergence in volume and perimeter. The key novelty of our statement lies in the fact that we do not assume bounds on the exterior or interior touching balls.
引用
收藏
页码:12111 / 12135
页数:25
相关论文
共 50 条