Robust Detection of Periodic Patterns in Gene Expression Microarray Data using Topological Signal Analysis

被引:0
|
作者
Emrani, Saba [1 ]
Krim, Hamid [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
关键词
Gene expression; microarrays; topological signal analysis; periodicity detection; biomedical signal processing; IDENTIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a new approach for analyzing gene expression data that builds on topological characteristics of time series. Our goal is to identify cell cycle regulated genes in micro array dataset. We construct a point cloud out of time series using delay coordinate embeddings. Persistent homology is utilized to analyse the topology of the point cloud for detection of periodicity. This novel technique is accurate and robust to noise, missing data points and varying sampling intervals. Our experiments using Yeast Saccharomyces cerevisiae dataset substantiate the capabilities of the proposed method.
引用
收藏
页码:1406 / 1409
页数:4
相关论文
共 50 条
  • [31] Information theory in the analysis of gene expression microarray data
    Pedro Cano
    Nature Genetics, 2001, 27 (Suppl 4) : 45 - 45
  • [32] Statistical design and the analysis of gene expression microarray data
    Kerr, MK
    Churchill, GA
    GENETICAL RESEARCH, 2001, 77 (02) : 123 - 128
  • [33] Analysis of Imputation Algorithms for Microarray Gene Expression Data
    Shashirekha, H. L.
    Wani, Agaz Hussain
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2015, : 589 - 593
  • [34] Complementary use of cluster analysis and biplots to discover and validate patterns of gene expression in microarray data
    Bassani, Niccolo
    Ambrogi, Federico
    Coradini, Danila
    Boracchi, Patrizia
    Biganzoli, Elia
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [35] Analysis of gene expression patterns in breast cancer by microarray technology
    Gokgoz N.
    Sun X.
    Bull S.
    Woodgett J.
    Andrulis I.
    Nature Genetics, 2001, 27 (Suppl 4) : 56 - 56
  • [36] Integrated analysis of DNA copy number and gene expression microarray data using gene sets
    Renée X Menezes
    Marten Boetzer
    Melle Sieswerda
    Gert-Jan B van Ommen
    Judith M Boer
    BMC Bioinformatics, 10
  • [37] Integrated analysis of DNA copy number and gene expression microarray data using gene sets
    Menezes, Renee X.
    Boetzer, Marten
    Sieswerda, Melle
    van Ommen, Gert-Jan B.
    Boer, Judith M.
    BMC BIOINFORMATICS, 2009, 10
  • [38] ROBUST CROSSINGS DETECTION IN NOISY SIGNALS USING TOPOLOGICAL SIGNAL PROCESSING
    Tanweer, Sunia
    Khasawneh, Firas a.
    Munch, Elizabeth
    FOUNDATIONS OF DATA SCIENCE, 2024, 6 (02): : 154 - 171
  • [39] Microarray-MD: A system for exploratory analysis of microarray gene expression data
    Maroulis, D. E.
    Flaounas, I. N.
    Iakovidis, D. K.
    Karkanis, S. A.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2006, 83 (02) : 157 - 167
  • [40] Qualitative assessment of cDNA microarray gene expression data using detrended fluctuation analysis
    Nagarajan, Radhakrishnan
    Upreti, Meenakshi
    Govindan, R. B.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 373 : 503 - 510