Robust Detection of Periodic Patterns in Gene Expression Microarray Data using Topological Signal Analysis

被引:0
|
作者
Emrani, Saba [1 ]
Krim, Hamid [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
来源
2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP) | 2014年
关键词
Gene expression; microarrays; topological signal analysis; periodicity detection; biomedical signal processing; IDENTIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a new approach for analyzing gene expression data that builds on topological characteristics of time series. Our goal is to identify cell cycle regulated genes in micro array dataset. We construct a point cloud out of time series using delay coordinate embeddings. Persistent homology is utilized to analyse the topology of the point cloud for detection of periodicity. This novel technique is accurate and robust to noise, missing data points and varying sampling intervals. Our experiments using Yeast Saccharomyces cerevisiae dataset substantiate the capabilities of the proposed method.
引用
收藏
页码:1406 / 1409
页数:4
相关论文
共 50 条
  • [21] A robust method for estimating gene expression states using Affymetrix microarray probe level data
    Megu Ohtaki
    Keiko Otani
    Keiko Hiyama
    Naomi Kamei
    Kenichi Satoh
    Eiso Hiyama
    BMC Bioinformatics, 11
  • [22] A robust method for estimating gene expression states using Affymetrix microarray probe level data
    Ohtaki, Megu
    Otani, Keiko
    Hiyama, Keiko
    Kamei, Naomi
    Satoh, Kenichi
    Hiyama, Eiso
    BMC BIOINFORMATICS, 2010, 11
  • [23] Effective Clustering of Microarray Gene Expression Data using Signal Processing and Soft Computing Methods
    Mishra, Purnendu
    Bhoi, Nilamani
    Meher, Jayakishan
    2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, SIGNALS, COMMUNICATION AND OPTIMIZATION (EESCO), 2015,
  • [24] Using fuzzy patterns for gene selection and data reduction on microarray data
    Diaz, Fernando
    Fdez-Riverola, Florentino
    Glez-Pena, Daniel
    Corchado, Juan M.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2006, PROCEEDINGS, 2006, 4224 : 1087 - 1094
  • [25] Microarray Gene Expression Analysis using R
    Petre, I.
    Buiu, C.
    INTERNATIONAL CONFERENCE ON ADVANCEMENTS OF MEDICINE AND HEALTH CARE THROUGH TECHNOLOGY, MEDITECH 2016, 2017, 59 : 358 - 361
  • [26] Assessing the Evolution of Gene Expression Using Microarray Data
    Woody, Owen Z.
    Doxey, Andrew C.
    McConkey, Brendan J.
    EVOLUTIONARY BIOINFORMATICS, 2008, 4 : 139 - 152
  • [27] Differential analysis of DNA microarray gene expression data
    Hatfield, GW
    Hung, SP
    Baldi, P
    MOLECULAR MICROBIOLOGY, 2003, 47 (04) : 871 - 877
  • [28] AVA: visual analysis of gene expression microarray data
    Zhou, YH
    Liu, JD
    BIOINFORMATICS, 2003, 19 (02) : 293 - 294
  • [29] Gene expression (microarray) data analysis by chemometric methods
    Zhu, David X.
    Goeke, Richard J.
    Baker, David L.
    Hamburg, James H.
    Booth, David E.
    Booth, Stephane E.
    CURRENT ANALYTICAL CHEMISTRY, 2007, 3 (03) : 233 - 237
  • [30] Multichannel image analysis of microarray gene expression data
    Ding, YH
    Fairley, JA
    Gardner, AB
    Simeonova, P
    Vachtsevanos, G
    PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2004, : 365 - 369