Analysis of Imputation Algorithms for Microarray Gene Expression Data

被引:0
|
作者
Shashirekha, H. L. [1 ]
Wani, Agaz Hussain [1 ]
机构
[1] Mangalore Univ, Dept Comp Sci, Mangalore 574199, India
关键词
Imputation; Microarray Data Analysis; Gene Expression Data; Missing Value Estimation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Microarray technology makes it possible to measure expression level of thousands of genes simultaneously in an efficient and inexpensive manner. However, due to various complexities in processing microarrays, expression information of various genes may be missing due to unreliable measurements. The occurrence of missing values in gene expression data can adversely affect downstream analyses such as clustering, dimensionality reduction etc. Different algorithms have been developed to estimate the missing values in different data sets and none of these algorithm works well with all the data sets. In this work, we explore the possible application of Mutual Nearest Neighbor (MNN) algorithm to impute the missing values, which shows comparable results with other well know imputation algorithms. We also have explored five different methods for missing value imputation namely Row Average Imputation, Mean Imputation, Median Imputation, k-Nearest Neighbor Imputation and combination of kNN based feature selection (kNNFS) and kNN -based imputation. The experiments are carried out on very high dimensional gene expression data such as Notterman Carcinoma and Notterman Adenocarcinoma data and the results are illustrated.
引用
收藏
页码:589 / 593
页数:5
相关论文
共 50 条
  • [1] A Review on Missing Value Imputation Algorithms for Microarray Gene Expression Data
    Moorthy, Kohbalan
    Mohamad, Mohd Saberi
    Deris, Safaai
    [J]. CURRENT BIOINFORMATICS, 2014, 9 (01) : 18 - 22
  • [2] Imputation of missing values in DNA microarray gene expression data
    Kim, H
    Golub, GH
    Park, H
    [J]. 2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 572 - 573
  • [3] An Efficient Technique for Missing value Imputation in Microarray Gene Expression Data
    Valarmathie, P.
    Dinakaran, K.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND SYSTEMS (ICCCS'14), 2014, : 73 - 80
  • [4] Meta analysis algorithms for microarray gene expression data using Gene Regulatory Networks
    Kazmi, Saira A.
    Kim, Yoo-Ah
    Shin, Dong-Guk
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (05) : 487 - 504
  • [5] DNA microarray data imputation and significance analysis of differential expression
    Jörnsten, R
    Wang, HY
    Welsh, WJ
    Ouyang, M
    [J]. BIOINFORMATICS, 2005, 21 (22) : 4155 - 4161
  • [6] Analysis of microarray gene expression data
    Pham, Tuan D.
    Wells, Christine
    Crane, Denis I.
    [J]. CURRENT BIOINFORMATICS, 2006, 1 (01) : 37 - 53
  • [7] Microarray gene expression data analysis
    Vachtsevanos, G
    Ding, YH
    Fairley, JA
    Gardner, AB
    Simeonova, P
    [J]. 2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 105 - 108
  • [8] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Tuikkala, Johannes
    Elo, Laura L.
    Nevalainen, Olli S.
    Aittokallio, Tero
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [9] An efficient ensemble method for missing value imputation in microarray gene expression data
    Xinshan Zhu
    Jiayu Wang
    Biao Sun
    Chao Ren
    Ting Yang
    Jie Ding
    [J]. BMC Bioinformatics, 22
  • [10] An efficient ensemble method for missing value imputation in microarray gene expression data
    Zhu, Xinshan
    Wang, Jiayu
    Sun, Biao
    Ren, Chao
    Yang, Ting
    Ding, Jie
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)